Template:Eyring-log rl: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
Line 7: Line 7:


<br>
<br>
:where:
where:


<br>
<br>
Line 13: Line 13:


<br>
<br>
:and:
and:


<br>
<br>
Line 23: Line 23:
<br>
<br>
::<math>{{t}_{R}}={{e}^{T_{R}^{\prime }}}</math>
::<math>{{t}_{R}}={{e}^{T_{R}^{\prime }}}</math>
<br>

Revision as of 23:54, 27 February 2012

Reliable Life


For the Eyring-lognormal model, the reliable life, or the mission duration for a desired reliability goal, [math]\displaystyle{ {{t}_{R}}, }[/math] is estimated by first solving the reliability equation with respect to time, as follows:


[math]\displaystyle{ T_{R}^{\prime }=-\ln (V)-A+\frac{B}{V}+z\cdot {{\sigma }_{{{T}'}}} }[/math]


where:


[math]\displaystyle{ z={{\Phi }^{-1}}\left[ F\left( T_{R}^{\prime },V \right) \right] }[/math]


and:


[math]\displaystyle{ \Phi (z)=\frac{1}{\sqrt{2\pi }}\int_{-\infty }^{z({T}',V)}{{e}^{-\tfrac{{{t}^{2}}}{2}}}dt }[/math]



Since [math]\displaystyle{ {T}'=\ln (T) }[/math] the reliable life, [math]\displaystyle{ {{t}_{R,}} }[/math] is given by:


[math]\displaystyle{ {{t}_{R}}={{e}^{T_{R}^{\prime }}} }[/math]