Template:Eyring-weib mean: Difference between revisions
Jump to navigation
Jump to search
(Created page with '====Mean or MTTF==== The mean, <math>\overline{T}</math>, or Mean Time To Failure (MTTF) for the Eyring-Weibull model is given by: ::<math>\overline{T}=\frac{1}{V}{{e}^{-\lef…') |
|||
Line 5: | Line 5: | ||
::<math>\overline{T}=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}\cdot \Gamma \left( \frac{1}{\beta }+1 \right)</math> | ::<math>\overline{T}=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}\cdot \Gamma \left( \frac{1}{\beta }+1 \right)</math> | ||
where <math>\Gamma \left( \tfrac{1}{\beta }+1 \right)</math> is the gamma function evaluated at the value of <math>\left( \tfrac{1}{\beta }+1 \right)</math> . | where <math>\Gamma \left( \tfrac{1}{\beta }+1 \right)</math> is the gamma function evaluated at the value of <math>\left( \tfrac{1}{\beta }+1 \right)</math> . | ||
<br> | <br> |
Revision as of 23:43, 27 February 2012
Mean or MTTF
The mean, [math]\displaystyle{ \overline{T} }[/math], or Mean Time To Failure (MTTF) for the Eyring-Weibull model is given by:
- [math]\displaystyle{ \overline{T}=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}\cdot \Gamma \left( \frac{1}{\beta }+1 \right) }[/math]
where [math]\displaystyle{ \Gamma \left( \tfrac{1}{\beta }+1 \right) }[/math] is the gamma function evaluated at the value of [math]\displaystyle{ \left( \tfrac{1}{\beta }+1 \right) }[/math] .