Template:Ald rf: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
Line 1: Line 1:
====Reliability Function====
====Reliability Function====
For the lognormal distribution, the reliability for a mission of time  <math>T</math> , starting at age 0, is given by:
For the lognormal distribution, the reliability for a mission of time  <math>T</math> , starting at age 0, is given by:
<br>
<br>
::<math>R(T)=\int_{T}^{\infty }f(t)dt</math>
::<math>R(T)=\int_{T}^{\infty }f(t)dt</math>
<br>
<br>
:or:
or:
<br>
<br>
::<math>R(T)=\int_{{{T}^{^{\prime }}}}^{\infty }\frac{1}{{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{t-\overline{{{T}'}}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}dt</math>
::<math>R(T)=\int_{{{T}^{^{\prime }}}}^{\infty }\frac{1}{{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{t-\overline{{{T}'}}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}dt</math>

Revision as of 23:29, 27 February 2012

Reliability Function

For the lognormal distribution, the reliability for a mission of time [math]\displaystyle{ T }[/math] , starting at age 0, is given by:


[math]\displaystyle{ R(T)=\int_{T}^{\infty }f(t)dt }[/math]


or:

[math]\displaystyle{ R(T)=\int_{{{T}^{^{\prime }}}}^{\infty }\frac{1}{{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{t-\overline{{{T}'}}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}dt }[/math]


There is no closed form solution for the lognormal reliability function. Solutions can be obtained via the use of standard normal tables.