Template:Aw cdf and rf: Difference between revisions
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
====The <math>cdf</math> and the Reliability Function==== | ====The <math>cdf</math> and the Reliability Function==== | ||
The <math>cdf</math> of the 2-parameter Weibull distribution is given by: | The <math>cdf</math> of the 2-parameter Weibull distribution is given by: | ||
::<math>F(T)=1-{{e}^{-{{\left( \tfrac{T}{\eta } \right)}^{\beta }}}}</math> | ::<math>F(T)=1-{{e}^{-{{\left( \tfrac{T}{\eta } \right)}^{\beta }}}}</math> | ||
The Weibull reliability function is given by: | The Weibull reliability function is given by: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
R(T)&= & 1-F(t) = \ {{e}^{-{{\left( \tfrac{T}{\eta } \right)}^{\beta }}}} | R(T)&= & 1-F(t) = \ {{e}^{-{{\left( \tfrac{T}{\eta } \right)}^{\beta }}}} | ||
\end{align}</math> | \end{align}</math> | ||
<br> |
Revision as of 22:33, 27 February 2012
The [math]\displaystyle{ cdf }[/math] and the Reliability Function
The [math]\displaystyle{ cdf }[/math] of the 2-parameter Weibull distribution is given by:
- [math]\displaystyle{ F(T)=1-{{e}^{-{{\left( \tfrac{T}{\eta } \right)}^{\beta }}}} }[/math]
The Weibull reliability function is given by:
- [math]\displaystyle{ \begin{align} R(T)&= & 1-F(t) = \ {{e}^{-{{\left( \tfrac{T}{\eta } \right)}^{\beta }}}} \end{align} }[/math]