Template:Aw mean: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '====The Mean or MTTF==== The mean, <math>\overline{T},</math> of the 2-parameter Weibull <math>pdf</math> is given by: <br> ::<math>\overline{T}=\eta \cdot \Gamma \left( \f…')
 
Line 1: Line 1:
====The Mean or MTTF====
====The Mean or MTTF====
The  mean,  <math>\overline{T},</math>  of the 2-parameter Weibull  <math>pdf</math>  is given by:  
The  mean,  <math>\overline{T},</math>  of the 2-parameter Weibull  <math>pdf</math>  is given by:  
<br>
<br>
::<math>\overline{T}=\eta \cdot \Gamma \left( \frac{1}{\beta }+1 \right)</math>
::<math>\overline{T}=\eta \cdot \Gamma \left( \frac{1}{\beta }+1 \right)</math>
<br>
<br>
where  <math>\Gamma \left( \tfrac{1}{\beta }+1 \right)</math>  is the gamma function evaluated at the value of  <math>\left( \tfrac{1}{\beta }+1 \right)</math> .
where  <math>\Gamma \left( \tfrac{1}{\beta }+1 \right)</math>  is the gamma function evaluated at the value of  <math>\left( \tfrac{1}{\beta }+1 \right)</math> .
<br>
<br>

Revision as of 22:32, 27 February 2012

The Mean or MTTF

The mean, [math]\displaystyle{ \overline{T}, }[/math] of the 2-parameter Weibull [math]\displaystyle{ pdf }[/math] is given by:


[math]\displaystyle{ \overline{T}=\eta \cdot \Gamma \left( \frac{1}{\beta }+1 \right) }[/math]


where [math]\displaystyle{ \Gamma \left( \tfrac{1}{\beta }+1 \right) }[/math] is the gamma function evaluated at the value of [math]\displaystyle{ \left( \tfrac{1}{\beta }+1 \right) }[/math] .