Template:Ipl lognormal: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
Line 5: Line 5:
The pdf of the lognormal distribution is given by:
The pdf of the lognormal distribution is given by:


::<math>f(T)=\frac{}{} e^{-\frac{1}{2}(\frac{T'-\overline{T'}}{\sigma_{T'}}^2}</math>(6)
::<math>f(T)=\frac{}{} e^{-\frac{1}{2}(\frac{T'-\overline{T'}}{\sigma_{T'}})^2}</math>




where:
where:


:<math>T'=ln(T)</math> = ln(T).
::<math>T'=ln(T)</math>.
 
and:


:<math>T</math> = times-to-failure.
:<math>T</math> = times-to-failure.
Line 20: Line 22:
The median of the lognormal distribution is given by:
The median of the lognormal distribution is given by:


::<math>\breve{T}=e^{\overline{T}'}</math>(7)
::<math>\breve{T}=e^{\overline{T}'}</math>





Revision as of 20:47, 15 February 2012

IPL-Lognormal

The pdf for the Inverse Power Law relationship and the lognormal distribution is given next.

The pdf of the lognormal distribution is given by:

[math]\displaystyle{ f(T)=\frac{}{} e^{-\frac{1}{2}(\frac{T'-\overline{T'}}{\sigma_{T'}})^2} }[/math]


where:

[math]\displaystyle{ T'=ln(T) }[/math].

and:

[math]\displaystyle{ T }[/math] = times-to-failure.
[math]\displaystyle{ \overline{T}' }[/math] = mean of the natural logarithms of the times-to-failure.
[math]\displaystyle{ \sigma_{T'} }[/math] = standard deviation of the natural logarithms of the times-to-failure.

The median of the lognormal distribution is given by:

[math]\displaystyle{ \breve{T}=e^{\overline{T}'} }[/math]


The IPL-lognormal model pdf can be obtained first by setting = L(V) in Eqn. ( 30). Therefore:


[math]\displaystyle{ \breve{T}=L(V)=\frac{1}{K*V^n} }[/math]


or:

[math]\displaystyle{ e^{\overline{T'}}=\frac{1}{K*V^n} }[/math]

Thus:

[math]\displaystyle{ \overline{T}'=-ln(K)-n ln(V) }[/math](8)

Substituting Eqn. (8) into Eqn. (6) yields the IPL- lognormal model pdf or:


IPL-Lognormal Statistical Properties Summary

The Mean

The mean life of the IPL-lognormal model (mean of the times-to-failure), , is given by:

(9)

The mean of the natural logarithms of the times-to-failure, , in terms of and is given by:


The Standard Deviation

The standard deviation of the IPL-lognormal model (standard deviation of the times-to-failure), , is given by:

(10)

The standard deviation of the natural logarithms of the times-to-failure, , in terms of and is given by:


The Mode

The mode of the IPL-lognormal model is given by:


IPL-Lognormal Reliability

The reliability for a mission of time T, starting at age 0, for the IPL-lognormal model is determined by:


or:


Reliable Life

The reliable life, or the mission duration for a desired reliability goal, tR is estimated by first solving the reliability equation with respect to time, as follows:


where:


and:


Since = ln(T) the reliable life, tR, is given by:


Lognormal Failure Rate

The lognormal failure rate is given by:


Parameter Estimation

Maximum Likelihood Estimation Method

The complete IPL-lognormal log-likelihood function is:

Chapter8 171.gif

where:

Chapter8 172.gif
Chapter8 173.gif

and:


  • Fe is the number of groups of exact times-to-failure data points.
  • Ni is the number of times-to-failure data points in the ith time-to-failure data group.
  • [math]\displaystyle{ s_{T'} }[/math] is the standard deviation of the natural logarithm of the times-to-failure (unknown, the first of three parameters to be estimated).
  • [math]\displaystyle{ K }[/math] is the IPL parameter (unknown, the second of three parameters to be estimated).
  • [math]\displaystyle{ n }[/math] is the second IPL parameter (unknown, the third of three parameters to be estimated).
  • [math]\displaystyle{ Vi }[/math] is the stress level of the ith group.
  • [math]\displaystyle{ Ti }[/math] is the exact failure time of the ith group.
  • [math]\displaystyle{ S }[/math] is the number of groups of suspension data points.
  • [math]\displaystyle{ N'_i }[/math] is the number of suspensions in the ith group of suspension data points.
  • [math]\displaystyle{ T^{'}_{i} }[/math] is the running time of the ith suspension data group.
  • [math]\displaystyle{ FI }[/math] is the number of interval data groups.
  • is the number of intervals in the ith group of data intervals.
  • is the beginning of the ith interval.
  • is the ending of the ith interval.


The solution (parameter estimates) will be found by solving for , , so that = 0, = 0 and = 0:


Chapter8 202.gif

and:

Chapter8 203.gif
Chapter8 204.gif