Template:Ipl ex mean: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '====Mean or MTTF==== The mean, <math>\overline{T},</math> or Mean Time To Failure (MTTF) for the IPL-exponential relationship is given by: <br> ::<math>\begin{align} & \over…')
 
Line 4: Line 4:
<br>
<br>
::<math>\begin{align}
::<math>\begin{align}
   & \overline{T}= & \mathop{}_{0}^{\infty }t\cdot f(t,V)dt=\mathop{}_{0}^{\infty }t\cdot K{{V}^{n}}{{e}^{-K{{V}^{n}}t}}dt \\
   & \overline{T}= & \int_{0}^{\infty }t\cdot f(t,V)dt=\int_{0}^{\infty }t\cdot K{{V}^{n}}{{e}^{-K{{V}^{n}}t}}dt =\  \frac{1}{K{{V}^{n}}}   
  & = & \frac{1}{K{{V}^{n}}}   
\end{align}</math>
\end{align}</math>



Revision as of 17:24, 15 February 2012

Mean or MTTF

The mean, [math]\displaystyle{ \overline{T}, }[/math] or Mean Time To Failure (MTTF) for the IPL-exponential relationship is given by:


[math]\displaystyle{ \begin{align} & \overline{T}= & \int_{0}^{\infty }t\cdot f(t,V)dt=\int_{0}^{\infty }t\cdot K{{V}^{n}}{{e}^{-K{{V}^{n}}t}}dt =\ \frac{1}{K{{V}^{n}}} \end{align} }[/math]


Note that the MTTF is a function of stress only and is simply equal to the IPL relationship (which is the original assumption), when using the exponential distribution.