Template:Eyring-ex rf: Difference between revisions
Jump to navigation
Jump to search
(Created page with '====Eyring-Exponential Reliability Function==== <br> The Eyring-exponential reliability function is given by: <br> ::<math>R(T,V)={{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V…') |
|||
Line 10: | Line 10: | ||
<br> | <br> | ||
::<math>R(T,V)=1-Q(T,V)=1-\ | ::<math>R(T,V)=1-Q(T,V)=1-\int_{0}^{T}f(T,V)dT</math> | ||
<br> | <br> | ||
Line 16: | Line 16: | ||
<br> | <br> | ||
::<math>R(T,V)=1-\ | ::<math>R(T,V)=1-\int_{0}^{T}V{{e}^{\left( A-\tfrac{B}{V} \right)}}{{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}}dT={{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}}</math> |
Revision as of 22:36, 14 February 2012
Eyring-Exponential Reliability Function
The Eyring-exponential reliability function is given by:
- [math]\displaystyle{ R(T,V)={{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}} }[/math]
This function is the complement of the Eyring-exponential cumulative distribution function or:
- [math]\displaystyle{ R(T,V)=1-Q(T,V)=1-\int_{0}^{T}f(T,V)dT }[/math]
- and:
- [math]\displaystyle{ R(T,V)=1-\int_{0}^{T}V{{e}^{\left( A-\tfrac{B}{V} \right)}}{{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}}dT={{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}} }[/math]