Template:Eyring-ex rf: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '====Eyring-Exponential Reliability Function==== <br> The Eyring-exponential reliability function is given by: <br> ::<math>R(T,V)={{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V…')
 
Line 10: Line 10:


<br>
<br>
::<math>R(T,V)=1-Q(T,V)=1-\mathop{}_{0}^{T}f(T,V)dT</math>
::<math>R(T,V)=1-Q(T,V)=1-\int_{0}^{T}f(T,V)dT</math>


<br>
<br>
Line 16: Line 16:


<br>
<br>
::<math>R(T,V)=1-\mathop{}_{0}^{T}V{{e}^{\left( A-\tfrac{B}{V} \right)}}{{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}}dT={{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}}</math>
::<math>R(T,V)=1-\int_{0}^{T}V{{e}^{\left( A-\tfrac{B}{V} \right)}}{{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}}dT={{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}}</math>

Revision as of 22:36, 14 February 2012

Eyring-Exponential Reliability Function


The Eyring-exponential reliability function is given by:


[math]\displaystyle{ R(T,V)={{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}} }[/math]


This function is the complement of the Eyring-exponential cumulative distribution function or:


[math]\displaystyle{ R(T,V)=1-Q(T,V)=1-\int_{0}^{T}f(T,V)dT }[/math]


and:


[math]\displaystyle{ R(T,V)=1-\int_{0}^{T}V{{e}^{\left( A-\tfrac{B}{V} \right)}}{{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}}dT={{e}^{-T\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}}} }[/math]