Template:Characteristics of the gamma distribution: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '===Characteristics of the Gamma Distribution=== Some of the specific characteristics of the gamma distribution are the following: For <math>k>1</math> : :• As <math>T\to 0,\…')
 
Line 1: Line 1:
===Characteristics of the Gamma Distribution===
===Characteristics of the Gamma Distribution===
Some of the specific characteristics of the gamma distribution are the following:
Some of the specific characteristics of the gamma distribution are the following:


For  <math>k>1</math> :
For  <math>k>1</math> :
:• As  <math>T\to 0,\infty </math>  ,  <math>f(T)\to 0.</math>  
:• As  <math>t\to 0,\infty </math>  ,  <math>f(t)\to 0.</math>  
:• <math>f(T)</math>  increases from 0 to the mode value and decreases thereafter.
:• <math>f(t)</math>  increases from 0 to the mode value and decreases thereafter.
:• If  <math>k\le 2</math>  then  <math>pdf</math>  has one inflection point at  <math>T={{e}^{\mu }}\sqrt{k-1}(</math>  <math>\sqrt{k-1}+1).</math>  
:• If  <math>k\le 2</math>  then  <math>pdf</math>  has one inflection point at  <math>t={{e}^{\mu }}\sqrt{k-1}(</math>  <math>\sqrt{k-1}+1).</math>  
:• If  <math>k>2</math>  then  <math>pdf</math>  has two inflection points for  <math>T={{e}^{\mu }}\sqrt{k-1}(</math>  <math>\sqrt{k-1}\pm 1).</math>  
:• If  <math>k>2</math>  then  <math>pdf</math>  has two inflection points for  <math>T={{e}^{\mu }}\sqrt{k-1}(</math>  <math>\sqrt{k-1}\pm 1).</math>  
:• For a fixed  <math>k</math> , as  <math>\mu </math>  increases, the  <math>pdf</math> starts to look more like a straight angle.
:• For a fixed  <math>k</math> , as  <math>\mu </math>  increases, the  <math>pdf</math> starts to look more like a straight angle.


As  <math>T\to \infty ,\lambda (T)\to \tfrac{1}{{{e}^{\mu }}}.</math>  
As  <math>t\to \infty ,\lambda (t)\to \tfrac{1}{{{e}^{\mu }}}.</math>  


[[Image:ldaGD10.1.gif|thumb|center|400px| ]]  
[[Image:ldaGD10.1.gif|thumb|center|400px| ]]  
Line 24: Line 25:


For  <math>0<k<1</math> :
For  <math>0<k<1</math> :
:• As  <math>T\to 0</math>  ,  <math>f(T)\to \infty .</math>  
:• As  <math>t\to 0</math>  ,  <math>f(t)\to \infty .</math>  
:• As  <math>T\to \infty ,f(T)\to 0.</math>  
:• As  <math>t\to \infty ,f(t)\to 0.</math>  
:• As  <math>T\to \infty ,\lambda (T)\to \tfrac{1}{{{e}^{\mu }}}.</math>  
:• As  <math>t\to \infty ,\lambda (t)\to \tfrac{1}{{{e}^{\mu }}}.</math>  
:• The  <math>pdf</math>  decreases monotonically and is convex.
:• The  <math>pdf</math>  decreases monotonically and is convex.
:• As  <math>\mu </math>  increases, the  <math>pdf</math>  gets stretched out to the right and its height decreases, while maintaining its shape.
:• As  <math>\mu </math>  increases, the  <math>pdf</math>  gets stretched out to the right and its height decreases, while maintaining its shape.

Revision as of 22:22, 14 February 2012

Characteristics of the Gamma Distribution

Some of the specific characteristics of the gamma distribution are the following:

For [math]\displaystyle{ k\gt 1 }[/math] :

• As [math]\displaystyle{ t\to 0,\infty }[/math] , [math]\displaystyle{ f(t)\to 0. }[/math]
[math]\displaystyle{ f(t) }[/math] increases from 0 to the mode value and decreases thereafter.
• If [math]\displaystyle{ k\le 2 }[/math] then [math]\displaystyle{ pdf }[/math] has one inflection point at [math]\displaystyle{ t={{e}^{\mu }}\sqrt{k-1}( }[/math] [math]\displaystyle{ \sqrt{k-1}+1). }[/math]
• If [math]\displaystyle{ k\gt 2 }[/math] then [math]\displaystyle{ pdf }[/math] has two inflection points for [math]\displaystyle{ T={{e}^{\mu }}\sqrt{k-1}( }[/math] [math]\displaystyle{ \sqrt{k-1}\pm 1). }[/math]
• For a fixed [math]\displaystyle{ k }[/math] , as [math]\displaystyle{ \mu }[/math] increases, the [math]\displaystyle{ pdf }[/math] starts to look more like a straight angle.

As [math]\displaystyle{ t\to \infty ,\lambda (t)\to \tfrac{1}{{{e}^{\mu }}}. }[/math]

LdaGD10.1.gif

For [math]\displaystyle{ k=1 }[/math] :

• Gamma becomes the exponential distribution.
• As [math]\displaystyle{ T\to 0 }[/math] , [math]\displaystyle{ f(T)\to \tfrac{1}{{{e}^{\mu }}}. }[/math]
• As [math]\displaystyle{ T\to \infty ,f(T)\to 0. }[/math]
• The [math]\displaystyle{ pdf }[/math] decreases monotonically and is convex.
[math]\displaystyle{ \lambda (T)\equiv \tfrac{1}{{{e}^{\mu }}} }[/math] . [math]\displaystyle{ \lambda (T) }[/math] is constant.
• The mode does not exist.
LdaGD10.2.gif

For [math]\displaystyle{ 0\lt k\lt 1 }[/math] :

• As [math]\displaystyle{ t\to 0 }[/math] , [math]\displaystyle{ f(t)\to \infty . }[/math]
• As [math]\displaystyle{ t\to \infty ,f(t)\to 0. }[/math]
• As [math]\displaystyle{ t\to \infty ,\lambda (t)\to \tfrac{1}{{{e}^{\mu }}}. }[/math]
• The [math]\displaystyle{ pdf }[/math] decreases monotonically and is convex.
• As [math]\displaystyle{ \mu }[/math] increases, the [math]\displaystyle{ pdf }[/math] gets stretched out to the right and its height decreases, while maintaining its shape.
• As [math]\displaystyle{ \mu }[/math] decreases, the [math]\displaystyle{ pdf }[/math] shifts towards the left and its height increases.
• The mode does not exist.
LdaGD10.3.gif