ALTA ALTA Standard Folio Data Eyring-Weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 28: Line 28:
|-
|-
|  valign="middle" | [http://reliawiki.com/index.php/Template:Alta_eyring-weibull#Eyring-Weibull Get More Details...]
|  valign="middle" | [http://reliawiki.com/index.php/Template:Alta_eyring-weibull#Eyring-Weibull Get More Details...]
|-
|  valign="middle" | [Example:Eyring See an example]
|}
|}
<br>  
<br>  


[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=ALTA_ALTA_Standard_Folio_Data_Eyring-Weibull&action=edit]]
[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=ALTA_ALTA_Standard_Folio_Data_Eyring-Weibull&action=edit]]

Revision as of 17:38, 14 February 2012

Webnotes-alta.png
Standard Folio Data Eyring-Weibull
ALTA

The [math]\displaystyle{ pdf }[/math] for 2-parameter Weibull distribution is given by:
[math]\displaystyle{ f(t)=\frac{\beta }{\eta }{{\left( \frac{t}{\eta } \right)}^{\beta -1}}{{e}^{-{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}} }[/math]
The scale parameter (or characteristic life) of the Weibull distribution is [math]\displaystyle{ \eta }[/math] . The Eyring-Weibull model [math]\displaystyle{ pdf }[/math] can then be obtained by setting [math]\displaystyle{ \eta =L(V) }[/math] in Eqn. (eyring):
[math]\displaystyle{ \eta =L(V)=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}} }[/math]
or:
[math]\displaystyle{ \frac{1}{\eta }=V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} }[/math]
Substituting for [math]\displaystyle{ \eta }[/math] into Eqn. (Eyrpdf):
[math]\displaystyle{ f(t,V)=\beta \cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}{{\left( t\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta -1}}{{e}^{-{{\left( t\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta }}}} }[/math]

Get More Details...
[Example:Eyring See an example]


Docedit.png