Template:Acb on the mean life: Difference between revisions
Line 1: | Line 1: | ||
====Confidence Bounds on the Mean Life==== | ====Confidence Bounds on the Mean Life==== | ||
<br> | <br> | ||
The Arrhenius-exponential distribution is given | The Arrhenius-exponential distribution is given by setting <math>m=L(V)</math> in the exponential <math>pdf</math> equation. The upper <math>({{m}_{U}})</math> and lower <math>({{m}_{L}})</math> bounds on the mean life are then estimated by: | ||
<br> | <br> | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
& {{m}_{U}}= \widehat{m}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{m})}}{\widehat{m}}}} \\ | |||
& {{m}_{L}}= | & {{m}_{L}}= \widehat{m}\cdot {{e}^{-\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{m})}}{\widehat{m}}}} | ||
\end{align}</math> | \end{align}</math> | ||
Line 13: | Line 13: | ||
<br> | <br> | ||
::<math>\alpha =\frac{1}{\sqrt{2\pi }}\ | ::<math>\alpha =\frac{1}{\sqrt{2\pi }}\int_{{{K}_{\alpha }}}^{\infty }{{e}^{-\tfrac{{{t}^{2}}}{2}}}dt=1-\Phi ({{K}_{\alpha }})</math> | ||
<br> | <br> |
Revision as of 00:56, 14 February 2012
Confidence Bounds on the Mean Life
The Arrhenius-exponential distribution is given by setting [math]\displaystyle{ m=L(V) }[/math] in the exponential [math]\displaystyle{ pdf }[/math] equation. The upper [math]\displaystyle{ ({{m}_{U}}) }[/math] and lower [math]\displaystyle{ ({{m}_{L}}) }[/math] bounds on the mean life are then estimated by:
- [math]\displaystyle{ \begin{align} & {{m}_{U}}= \widehat{m}\cdot {{e}^{\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{m})}}{\widehat{m}}}} \\ & {{m}_{L}}= \widehat{m}\cdot {{e}^{-\tfrac{{{K}_{\alpha }}\sqrt{Var(\widehat{m})}}{\widehat{m}}}} \end{align} }[/math]
where [math]\displaystyle{ {{K}_{\alpha }} }[/math] is defined by:
- [math]\displaystyle{ \alpha =\frac{1}{\sqrt{2\pi }}\int_{{{K}_{\alpha }}}^{\infty }{{e}^{-\tfrac{{{t}^{2}}}{2}}}dt=1-\Phi ({{K}_{\alpha }}) }[/math]
If [math]\displaystyle{ \delta }[/math] is the confidence level (i.e., 95%=0.95), then [math]\displaystyle{ \alpha =\tfrac{1-\delta }{2} }[/math] for the two-sided bounds, and [math]\displaystyle{ \alpha =1-\delta }[/math] for the one-sided bounds. The variance of [math]\displaystyle{ \widehat{m} }[/math] is given by:
- [math]\displaystyle{ \begin{align} & Var(\widehat{m})= & {{\left( \frac{\partial m}{\partial C} \right)}^{2}}Var(\widehat{C})+{{\left( \frac{\partial m}{\partial B} \right)}^{2}}Var(\widehat{B}) \\ & & +2\left( \frac{\partial m}{\partial C} \right)\left( \frac{\partial m}{\partial B} \right)Cov(\widehat{B},\widehat{C}) \end{align} }[/math]
or:
- [math]\displaystyle{ Var(\widehat{m})={{e}^{\tfrac{2\widehat{B}}{V}}}\left[ Var(\widehat{C})+\frac{{{\widehat{C}}^{2}}}{{{V}^{2}}}Var(\widehat{B})+\frac{2\widehat{C}}{V}Cov(\widehat{B},\widehat{C}) \right] }[/math]
The variances and covariance of [math]\displaystyle{ B }[/math] and [math]\displaystyle{ C }[/math] are estimated from the local Fisher matrix (evaluated at [math]\displaystyle{ \widehat{B} }[/math] , [math]\displaystyle{ \widehat{C}) }[/math] as follows:
- [math]\displaystyle{ \left[ \begin{matrix} Var(\widehat{B}) & Cov(\widehat{B},\widehat{C}) \\ Cov(\widehat{C},\widehat{B}) & Var(\widehat{C}) \\ \end{matrix} \right]={{\left[ \begin{matrix} -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{B}^{2}}} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial B\partial C} \\ -\tfrac{{{\partial }^{2}}\Lambda }{\partial C\partial B} & -\tfrac{{{\partial }^{2}}\Lambda }{\partial {{C}^{2}}} \\ \end{matrix} \right]}^{-1}} }[/math]