Template:Example: Lognormal General Example Complete Data: Difference between revisions
Jump to navigation
Jump to search
(Created page with ''''Lognormal Distribution General Example Complete Data''' Determine the lognormal parameter estimates for the data given in Table 9.4. {|align="center" border=1 cellspacing=1 …') |
No edit summary |
||
Line 4: | Line 4: | ||
{|align="center" border=1 cellspacing=1 | {|align="center" border=1 cellspacing=1 | ||
|- | |- | ||
|colspan="3" style="text-align:center"| Table 9.4 - Non-Grouped Data | |colspan="3" style="text-align:center"| Table 9.4 - Non-Grouped Times-to-Failure Data | ||
|- | |- | ||
!Data point index | !Data point index | ||
Line 33: | Line 33: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
& {{{\hat{\mu }}}^{\prime }}= & 2.83 \\ | & {{{\hat{\mu }}}^{\prime }}= & 2.83 \\ | ||
& {{{\hat{\sigma }}}_ | & {{{\hat{\sigma '}}}_}= & 1.10 | ||
\end{align}</math> | \end{align}</math> | ||
Line 41: | Line 41: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
& {{{\hat{\mu }}}^{\prime }}= & 2.83 \\ | & {{{\hat{\mu }}}^{\prime }}= & 2.83 \\ | ||
& {{{\hat{\sigma } | & {{{\hat{\sigma' }}}}= & 1.24 | ||
\end{align}</math> | \end{align}</math> | ||
Line 49: | Line 49: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
& {{{\hat{\mu }}}^{\prime }}= & 2.83 \\ | & {{{\hat{\mu }}}^{\prime }}= & 2.83 \\ | ||
& {{{\hat{\sigma } | & {{{\hat{\sigma' }}}}= & 1.36 | ||
\end{align}</math> | \end{align}</math> |
Revision as of 23:44, 13 February 2012
Lognormal Distribution General Example Complete Data
Determine the lognormal parameter estimates for the data given in Table 9.4.
Table 9.4 - Non-Grouped Times-to-Failure Data | ||
Data point index | State F or S | State End Time |
---|---|---|
1 | F | 2 |
2 | F | 5 |
3 | F | 11 |
4 | F | 23 |
5 | F | 29 |
6 | F | 37 |
7 | F | 43 |
8 | F | 59 |
Solution
Using Weibull++, the computed parameters for maximum likelihood are:
- [math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 2.83 \\ & {{{\hat{\sigma '}}}_}= & 1.10 \end{align} }[/math]
For rank regression on [math]\displaystyle{ X\ \ : }[/math]
- [math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 2.83 \\ & {{{\hat{\sigma' }}}}= & 1.24 \end{align} }[/math]
For rank regression on [math]\displaystyle{ Y\ \ : }[/math]
- [math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 2.83 \\ & {{{\hat{\sigma' }}}}= & 1.36 \end{align} }[/math]