Template:Example: Lognormal Distribution Likelihood Ratio Bound (Parameters): Difference between revisions
(Created page with ''''Lognormal Distribution Likelihood Ratio Bound Example (Parameters)''' Five units are put on a reliability test and experience failures at 45, 60, 75, 90, and 115 hours. Assum…') |
No edit summary |
||
Line 1: | Line 1: | ||
'''Lognormal Distribution Likelihood Ratio Bound Example (Parameters)''' | '''Lognormal Distribution Likelihood Ratio Bound Example (Parameters)''' | ||
Five units are put on a reliability test and experience failures at 45, 60, 75, 90, and 115 hours. Assuming a lognormal distribution, the MLE parameter estimates are calculated to be <math>{{\widehat{\mu }}^{\prime }}=4.2926</math> and <math>{{\widehat{\sigma | Five units are put on a reliability test and experience failures at 45, 60, 75, 90, and 115 hours. Assuming a lognormal distribution, the MLE parameter estimates are calculated to be <math>{{\widehat{\mu }}^{\prime }}=4.2926</math> and <math>{{\widehat{\sigma'}}}=0.32361.</math> Calculate the two-sided 75% confidence bounds on these parameters using the likelihood ratio method. | ||
'''Solution''' | '''Solution''' | ||
Line 8: | Line 8: | ||
<center><math>\begin{align} | <center><math>\begin{align} | ||
L({{\widehat{\mu }}^{\prime }},{{\widehat{\sigma | L({{\widehat{\mu }}^{\prime }},{{\widehat{\sigma' }}})= & \underset{i=1}{\overset{N}{\mathop \prod }}\,f({{x}_{i}};{{\widehat{\mu }}^{\prime }},{{\widehat{\sigma' }}}), \\ | ||
= & \underset{i=1}{\overset{N}{\mathop \prod }}\,\frac{1}{{{x}_{i}}\cdot {{\widehat{\sigma | = & \underset{i=1}{\overset{N}{\mathop \prod }}\,\frac{1}{{{x}_{i}}\cdot {{\widehat{\sigma' }}}\cdot \sqrt{2\pi }}\cdot {{e}^{-\tfrac{1}{2}{{\left( \tfrac{\text{ln}({{x}_{i}})-{{\widehat{\mu }}^{\prime }}}{{{\widehat{\sigma' }}}} \right)}^{2}}}} \\ | ||
L({{\widehat{\mu }}^{\prime }},{{\widehat{\sigma | L({{\widehat{\mu }}^{\prime }},{{\widehat{\sigma'}}})= & \underset{i=1}{\overset{5}{\mathop \prod }}\,\frac{1}{{{x}_{i}}\cdot 0.32361\cdot \sqrt{2\pi }}\cdot {{e}^{-\tfrac{1}{2}{{\left( \tfrac{\text{ln}({{x}_{i}})-4.2926}{0.32361} \right)}^{2}}}} \\ | ||
L({{\widehat{\mu }}^{\prime }},{{\widehat{\sigma | L({{\widehat{\mu }}^{\prime }},{{\widehat{\sigma'}}})= & 1.115256\times {{10}^{-10}} | ||
\end{align}</math></center> | \end{align}</math></center> | ||
where <math>{{x}_{i}}</math> are the original time-to-failure data points. We can now rearrange | where <math>{{x}_{i}}</math> are the original time-to-failure data points. We can now rearrange the likelihod ratio equation to the form: | ||
::<math>L({\mu }',{{\sigma | ::<math>L({\mu }',{{\sigma' }})-L({{\widehat{\mu }}^{\prime }},{{\widehat{\sigma' }}})\cdot {{e}^{\tfrac{-\chi _{\alpha ;1}^{2}}{2}}}=0</math> | ||
Since our specified confidence level, <math>\delta </math> , is 75%, we can calculate the value of the chi-squared statistic, <math>\chi _{0.75;1}^{2}=1.323303.</math> We can now substitute this information into the equation: | Since our specified confidence level, <math>\delta </math> , is 75%, we can calculate the value of the chi-squared statistic, <math>\chi _{0.75;1}^{2}=1.323303.</math> We can now substitute this information into the equation: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
& L({\mu }',{{\sigma | & L({\mu }',{{\sigma' }})-L({{\widehat{\mu }}^{\prime }},{{\widehat{\sigma' }}})\cdot {{e}^{\tfrac{-\chi _{\alpha ;1}^{2}}{2}}}= & 0 \\ | ||
& L({\mu }',{{\sigma | & L({\mu }',{{\sigma'}})-1.115256\times {{10}^{-10}}\cdot {{e}^{\tfrac{-1.323303}{2}}}= & 0 \\ | ||
& L({\mu }',{{\sigma | & L({\mu }',{{\sigma'}})-5.754703\times {{10}^{-11}}= & 0 | ||
\end{align}</math> | \end{align}</math> | ||
It now remains to find the values of <math>{\mu }'</math> and <math>{{\sigma | It now remains to find the values of <math>{\mu }'</math> and <math>{{\sigma'}}</math> which satisfy this equation. This is an iterative process that requires setting the value of <math>{{\sigma'}}</math> and finding the appropriate values of <math>{\mu }'</math> , and vice versa. | ||
The following table gives the values of <math>{\mu }'</math> based on given values of <math>{{\sigma | The following table gives the values of <math>{\mu }'</math> based on given values of <math>{{\sigma'}}</math> . | ||
<center><math>\begin{matrix} | <center><math>\begin{matrix} | ||
{{\sigma | {{\sigma' }} & \mu _{1}^{\prime } & \mu _{2}^{\prime } & {{\sigma' }} & \mu _{1}^{\prime } & \mu _{2}^{\prime } \\ | ||
0.24 & 4.2421 & 4.3432 & 0.37 & 4.1145 & 4.4708 \\ | 0.24 & 4.2421 & 4.3432 & 0.37 & 4.1145 & 4.4708 \\ | ||
0.25 & 4.2115 & 4.3738 & 0.38 & 4.1152 & 4.4701 \\ | 0.25 & 4.2115 & 4.3738 & 0.38 & 4.1152 & 4.4701 \\ | ||
Line 52: | Line 52: | ||
[[Image:ldachp9ex5.gif|thumb|center|400px| ]] | [[Image:ldachp9ex5.gif|thumb|center|400px| ]] | ||
(Note that this plot is generated with degrees of freedom <math>k=1</math> , as we are only determining bounds on one parameter. The contour plots generated in Weibull++ are done with degrees of freedom <math>k=2</math> , for use in comparing both parameters simultaneously.) As can be determined from the table the lowest calculated value for <math>{\mu }'</math> is 4.1145, while the highest is 4.4708. These represent the two-sided 75% confidence limits on this parameter. Since solutions for the equation do not exist for values of <math>{{\sigma | (Note that this plot is generated with degrees of freedom <math>k=1</math> , as we are only determining bounds on one parameter. The contour plots generated in Weibull++ are done with degrees of freedom <math>k=2</math> , for use in comparing both parameters simultaneously.) As can be determined from the table the lowest calculated value for <math>{\mu }'</math> is 4.1145, while the highest is 4.4708. These represent the two-sided 75% confidence limits on this parameter. Since solutions for the equation do not exist for values of <math>{{\sigma' | ||
}}</math> below 0.24 or above 0.48, these can be considered the two-sided 75% confidence limits for this parameter. In order to obtain more accurate values for the confidence limits on <math>{{\sigma'}}</math> , we can perform the same procedure as before, but finding the two values of <math>\sigma </math> that correspond with a given value of <math>{\mu }'.</math> Using this method, we find that the 75% confidence limits on <math>{{\sigma'}}</math> are 0.23405 and 0.48936, which are close to the initial estimates of 0.24 and 0.48. |
Revision as of 23:18, 13 February 2012
Lognormal Distribution Likelihood Ratio Bound Example (Parameters)
Five units are put on a reliability test and experience failures at 45, 60, 75, 90, and 115 hours. Assuming a lognormal distribution, the MLE parameter estimates are calculated to be [math]\displaystyle{ {{\widehat{\mu }}^{\prime }}=4.2926 }[/math] and [math]\displaystyle{ {{\widehat{\sigma'}}}=0.32361. }[/math] Calculate the two-sided 75% confidence bounds on these parameters using the likelihood ratio method.
Solution
The first step is to calculate the likelihood function for the parameter estimates:
where [math]\displaystyle{ {{x}_{i}} }[/math] are the original time-to-failure data points. We can now rearrange the likelihod ratio equation to the form:
- [math]\displaystyle{ L({\mu }',{{\sigma' }})-L({{\widehat{\mu }}^{\prime }},{{\widehat{\sigma' }}})\cdot {{e}^{\tfrac{-\chi _{\alpha ;1}^{2}}{2}}}=0 }[/math]
Since our specified confidence level, [math]\displaystyle{ \delta }[/math] , is 75%, we can calculate the value of the chi-squared statistic, [math]\displaystyle{ \chi _{0.75;1}^{2}=1.323303. }[/math] We can now substitute this information into the equation:
- [math]\displaystyle{ \begin{align} & L({\mu }',{{\sigma' }})-L({{\widehat{\mu }}^{\prime }},{{\widehat{\sigma' }}})\cdot {{e}^{\tfrac{-\chi _{\alpha ;1}^{2}}{2}}}= & 0 \\ & L({\mu }',{{\sigma'}})-1.115256\times {{10}^{-10}}\cdot {{e}^{\tfrac{-1.323303}{2}}}= & 0 \\ & L({\mu }',{{\sigma'}})-5.754703\times {{10}^{-11}}= & 0 \end{align} }[/math]
It now remains to find the values of [math]\displaystyle{ {\mu }' }[/math] and [math]\displaystyle{ {{\sigma'}} }[/math] which satisfy this equation. This is an iterative process that requires setting the value of [math]\displaystyle{ {{\sigma'}} }[/math] and finding the appropriate values of [math]\displaystyle{ {\mu }' }[/math] , and vice versa.
The following table gives the values of [math]\displaystyle{ {\mu }' }[/math] based on given values of [math]\displaystyle{ {{\sigma'}} }[/math] .
These points are represented graphically in the following contour plot:
(Note that this plot is generated with degrees of freedom [math]\displaystyle{ k=1 }[/math] , as we are only determining bounds on one parameter. The contour plots generated in Weibull++ are done with degrees of freedom [math]\displaystyle{ k=2 }[/math] , for use in comparing both parameters simultaneously.) As can be determined from the table the lowest calculated value for [math]\displaystyle{ {\mu }' }[/math] is 4.1145, while the highest is 4.4708. These represent the two-sided 75% confidence limits on this parameter. Since solutions for the equation do not exist for values of [math]\displaystyle{ {{\sigma' }} }[/math] below 0.24 or above 0.48, these can be considered the two-sided 75% confidence limits for this parameter. In order to obtain more accurate values for the confidence limits on [math]\displaystyle{ {{\sigma'}} }[/math] , we can perform the same procedure as before, but finding the two values of [math]\displaystyle{ \sigma }[/math] that correspond with a given value of [math]\displaystyle{ {\mu }'. }[/math] Using this method, we find that the 75% confidence limits on [math]\displaystyle{ {{\sigma'}} }[/math] are 0.23405 and 0.48936, which are close to the initial estimates of 0.24 and 0.48.