Template:Aw cdf and rf: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
Line 7: Line 7:


::<math>\begin{align}
::<math>\begin{align}
   R(T)&= & 1-F(t) \\
   R(T)&= & 1-F(t) = \ {{e}^{-{{\left( \tfrac{T}{\eta } \right)}^{\beta }}}}   
& = & {{e}^{-{{\left( \tfrac{T}{\eta } \right)}^{\beta }}}}   
\end{align}</math>
\end{align}</math>

Revision as of 23:04, 13 February 2012

The [math]\displaystyle{ cdf }[/math] and the Reliability Function

The [math]\displaystyle{ cdf }[/math] of the 2-parameter Weibull distribution is given by:

[math]\displaystyle{ F(T)=1-{{e}^{-{{\left( \tfrac{T}{\eta } \right)}^{\beta }}}} }[/math]

The Weibull reliability function is given by:

[math]\displaystyle{ \begin{align} R(T)&= & 1-F(t) = \ {{e}^{-{{\left( \tfrac{T}{\eta } \right)}^{\beta }}}} \end{align} }[/math]