Template:Aae rf: Difference between revisions
Jump to navigation
Jump to search
(Created page with '====Arrhenius-Exponential Reliability Function==== <br> The Arrhenius-exponential reliability function is given by: <br> ::<math>R(T,V)={{e}^{-\tfrac{T}{C{{e}^{\tfrac{B}{V}}}}}…') |
|||
Line 11: | Line 11: | ||
<br> | <br> | ||
::<math>R(T,V)=1-Q(T,V)=1-\ | ::<math>R(T,V)=1-Q(T,V)=1-\int_{0}^{T}f(T,V)dT</math> | ||
<br> | <br> | ||
Line 17: | Line 17: | ||
<br> | <br> | ||
::<math>R(T,V)=1-\ | ::<math>R(T,V)=1-\int_{0}^{T}\frac{1}{C{{e}^{\tfrac{B}{V}}}}{{e}^{-\tfrac{T}{C{{e}^{\tfrac{B}{V}}}}}}dT={{e}^{-\tfrac{T}{C{{e}^{\tfrac{B}{V}}}}}}</math> | ||
<br> | <br> |
Revision as of 22:33, 13 February 2012
Arrhenius-Exponential Reliability Function
The Arrhenius-exponential reliability function is given by:
- [math]\displaystyle{ R(T,V)={{e}^{-\tfrac{T}{C{{e}^{\tfrac{B}{V}}}}}} }[/math]
This function is the complement of the Arrhenius-exponential cumulative distribution function or:
- [math]\displaystyle{ R(T,V)=1-Q(T,V)=1-\int_{0}^{T}f(T,V)dT }[/math]
and:
- [math]\displaystyle{ R(T,V)=1-\int_{0}^{T}\frac{1}{C{{e}^{\tfrac{B}{V}}}}{{e}^{-\tfrac{T}{C{{e}^{\tfrac{B}{V}}}}}}dT={{e}^{-\tfrac{T}{C{{e}^{\tfrac{B}{V}}}}}} }[/math]