Template:Aae rf: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '====Arrhenius-Exponential Reliability Function==== <br> The Arrhenius-exponential reliability function is given by: <br> ::<math>R(T,V)={{e}^{-\tfrac{T}{C{{e}^{\tfrac{B}{V}}}}}…')
 
Line 11: Line 11:


<br>
<br>
::<math>R(T,V)=1-Q(T,V)=1-\mathop{}_{0}^{T}f(T,V)dT</math>
::<math>R(T,V)=1-Q(T,V)=1-\int_{0}^{T}f(T,V)dT</math>


<br>
<br>
Line 17: Line 17:


<br>
<br>
::<math>R(T,V)=1-\mathop{}_{0}^{T}\frac{1}{C{{e}^{\tfrac{B}{V}}}}{{e}^{-\tfrac{T}{C{{e}^{\tfrac{B}{V}}}}}}dT={{e}^{-\tfrac{T}{C{{e}^{\tfrac{B}{V}}}}}}</math>
::<math>R(T,V)=1-\int_{0}^{T}\frac{1}{C{{e}^{\tfrac{B}{V}}}}{{e}^{-\tfrac{T}{C{{e}^{\tfrac{B}{V}}}}}}dT={{e}^{-\tfrac{T}{C{{e}^{\tfrac{B}{V}}}}}}</math>


<br>
<br>

Revision as of 22:33, 13 February 2012

Arrhenius-Exponential Reliability Function


The Arrhenius-exponential reliability function is given by:


[math]\displaystyle{ R(T,V)={{e}^{-\tfrac{T}{C{{e}^{\tfrac{B}{V}}}}}} }[/math]


This function is the complement of the Arrhenius-exponential cumulative distribution function or:


[math]\displaystyle{ R(T,V)=1-Q(T,V)=1-\int_{0}^{T}f(T,V)dT }[/math]


and:


[math]\displaystyle{ R(T,V)=1-\int_{0}^{T}\frac{1}{C{{e}^{\tfrac{B}{V}}}}{{e}^{-\tfrac{T}{C{{e}^{\tfrac{B}{V}}}}}}dT={{e}^{-\tfrac{T}{C{{e}^{\tfrac{B}{V}}}}}} }[/math]