Template:Example: Lognormal Distribution RRY: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with ''''Lognormal Distribution RRY Example''' Fourteen units were reliability tested and the following life test data were obtained: {|align="center" border=1 cellspacing=0 |- |cols…')
 
No edit summary
Line 1: Line 1:
'''Lognormal Distribution RRY Example'''
'''Lognormal Distribution RRY Example'''
Fourteen units were reliability tested and the following life test data were obtained:
Fourteen units were reliability tested and the following life test data were obtained:



Revision as of 18:15, 13 February 2012

Lognormal Distribution RRY Example

Fourteen units were reliability tested and the following life test data were obtained:

Table 9.1 - Life Test Data for Example 2
Data point index Time-to-failure
1 5
2 10
3 15
4 20
5 25
6 30
7 35
8 40
9 50
10 60
11 70
12 80
13 90
14 100

Assuming the data follow a lognormal distribution, estimate the parameters and the correlation coefficient, [math]\displaystyle{ \rho }[/math] , using rank regression on Y.

Solution Construct Table 9.2, as shown next.

[math]\displaystyle{ \overset{{}}{\mathop{\text{Table 9}\text{.2 - Least Squares Analysis}}}\, }[/math]
[math]\displaystyle{ \begin{matrix} N & T_{i} & F(T_{i}) & {T_{i}}'& y_{i} & {{T_{i}}'}^{2} & y_{i}^{2} & T_{i} y_{i} \\ \text{1} & \text{5} & \text{0}\text{.0483} & \text{1}\text{.6094}& \text{-1}\text{.6619} & \text{2}\text{.5903} & \text{2}\text{.7619} & \text{-2}\text{.6747} \\ \text{2} & \text{10} & \text{0}\text{.1170} & \text{2.3026}& \text{-1.1901} & \text{5.3019} & \text{1.4163} & \text{-2.7403} \\ \text{3} & \text{15} & \text{0}\text{.1865} & \text{2.7080}&\text{-0.8908} & \text{7.3335} & \text{0.7935} & \text{-2.4123} \\ \text{4} & \text{20} & \text{0}\text{.2561} & \text{2.9957} &\text{-0.6552} & \text{8.9744} & \text{0.4292} & \text{-1.9627} \\ \text{5} & \text{25} & \text{0}\text{.3258} & \text{3.2189}& \text{-0.4512} & \text{10.3612} & \text{0.2036} & \text{-1.4524} \\ \text{6} & \text{30} & \text{0}\text{.3954} & \text{3.4012}& \text{-0.2647} & \text{11.5681} & \text{0.0701} & \text{-0.9004} \\ \text{7} & \text{35} & \text{0}\text{.4651} & \text{3.5553} & \text{-0.0873} & \text{12.6405} & \text{-0.0076}& \text{-0.3102} \\ \text{8} & \text{40} & \text{0}\text{.5349} & \text{3.6889}& \text{0.0873} & \text{13.6078} & \text{0.0076} & \text{0.3219} \\ \text{9} & \text{50} & \text{0}\text{.6046} & \text{3.912} & \text{0.2647} & \text{15.3039} & \text{0.0701} &\text{1.0357} \\ \text{10} & \text{60} & \text{0}\text{.6742} & \text{4.0943} & \text{0.4512} & \text{16.7637} & \text{0.2036}&\text{1.8474} \\ \text{11} & \text{70} & \text{0}\text{.7439} & \text{4.2485} & \text{0.6552} & \text{18.0497}& \text{0.4292} & \text{2.7834} \\ \text{12} & \text{80} & \text{0}\text{.8135} & \text{4.382} & \text{0.8908} & \text{19.2022} & \text{0.7935} & \text{3.9035} \\ \text{13} & \text{90} & \text{0}\text{.8830} & \text{4.4998} & \text{1.1901} & \text{20.2483}&\text{1.4163} & \text{5.3552} \\ \text{14} & \text{100}& \text{1.9517} & \text{4.6052} & \text{1.6619} & \text{21.2076} &\text{2.7619} & \text{7.6533} \\ \sum_{}^{} & \text{ } & \text{ } & \text{49.222} & \text{0} & \text{183.1531} & \text{11.3646} & \text{10.4473} \\ \end{matrix} }[/math]


The median rank values ( [math]\displaystyle{ F({{T}_{i}}) }[/math] ) can be found in rank tables or by using the Quick Statistical Reference in Weibull++ .

The [math]\displaystyle{ {{y}_{i}} }[/math] values were obtained from the standardized normal distribution's area tables by entering for [math]\displaystyle{ F(z) }[/math] and getting the corresponding [math]\displaystyle{ z }[/math] value ( [math]\displaystyle{ {{y}_{i}} }[/math] ).

Given the values in the table above, calculate [math]\displaystyle{ \widehat{a} }[/math] and [math]\displaystyle{ \widehat{b} }[/math] using Eqns. (aaln) and (bbln):


[math]\displaystyle{ \begin{align} & \widehat{b}= & \frac{\underset{i=1}{\overset{14}{\mathop{\sum }}}\,T_{i}^{\prime }{{y}_{i}}-(\underset{i=1}{\overset{14}{\mathop{\sum }}}\,T_{i}^{\prime })(\underset{i=1}{\overset{14}{\mathop{\sum }}}\,{{y}_{i}})/14}{\underset{i=1}{\overset{14}{\mathop{\sum }}}\,T_{i}^{\prime 2}-{{(\underset{i=1}{\overset{14}{\mathop{\sum }}}\,T_{i}^{\prime })}^{2}}/14} \\ & & \\ & \widehat{b}= & \frac{10.4473-(49.2220)(0)/14}{183.1530-{{(49.2220)}^{2}}/14} \end{align} }[/math]

or:

[math]\displaystyle{ \widehat{b}=1.0349 }[/math]

and:

[math]\displaystyle{ \widehat{a}=\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,{{y}_{i}}}{N}-\widehat{b}\frac{\underset{i=1}{\overset{N}{\mathop{\sum }}}\,T_{i}^{\prime }}{N} }[/math]

or:

[math]\displaystyle{ \widehat{a}=\frac{0}{14}-(1.0349)\frac{49.2220}{14}=-3.6386 }[/math]
Therefore, from Eqn. (bln):
[math]\displaystyle{ {{\sigma }_{{{T}'}}}=\frac{1}{\widehat{b}}=\frac{1}{1.0349}=0.9663 }[/math]
and from Eqn. (aln):
[math]\displaystyle{ {\mu }'=-\widehat{a}\cdot {{\sigma }_{{{T}'}}}=-(-3.6386)\cdot 0.9663 }[/math]

or:

[math]\displaystyle{ {\mu }'=3.516 }[/math]

The mean and the standard deviation of the lognormal distribution are obtained using Eqns. (mean) and (sdv):

[math]\displaystyle{ \overline{T}=\mu ={{e}^{3.516+\tfrac{1}{2}{{0.9663}^{2}}}}=53.6707\text{ hours} }[/math]

and:

[math]\displaystyle{ {{\sigma }_{T}}=\sqrt{({{e}^{2\cdot 3.516+{{0.9663}^{2}}}})({{e}^{{{0.9663}^{2}}}}-1)}=66.69\text{ hours} }[/math]

The correlation coefficient can be estimated using Eqn. (RHOln):

[math]\displaystyle{ \widehat{\rho }=0.9754 }[/math]

The above example can be repeated using Weibull++ , using RRY.

5folio.png

The mean can be obtained from the QCP and both the mean and the standard deviation can be obtained from the Function Wizard.