Weibull++ Standard Folio Data 1P-Weibull: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
| valign="middle" align="left" bgcolor=EEEEEE|[[Image:Webnotesbar.png|center|195px]] | | valign="middle" align="left" bgcolor=EEEEEE|[[Image:Webnotesbar.png|center|195px]] | ||
|} | |} | ||
{| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" | {| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" | ||
|- | |- | ||
Line 11: | Line 9: | ||
==== The One-Parameter Weibull Distribution ==== | ==== The One-Parameter Weibull Distribution ==== | ||
The one-parameter Weibull | The one-parameter Weibull is a special case of the Weibull distribution. function is obtained by again setting | ||
<math>\gamma=0 \,\!</math> and assuming <math>\beta=C=Constant \,\!</math> assumed value or: | <math>\gamma=0 \,\!</math> and assuming <math>\beta=C=Constant \,\!</math> assumed value or: | ||
Revision as of 23:17, 10 February 2012
The One-Parameter Weibull DistributionThe one-parameter Weibull is a special case of the Weibull distribution. function is obtained by again setting [math]\displaystyle{ \gamma=0 \,\! }[/math] and assuming [math]\displaystyle{ \beta=C=Constant \,\! }[/math] assumed value or: where the only unknown parameter is the scale parameter, [math]\displaystyle{ \eta\,\! }[/math]. Note that in the formulation of the one-parameter Weibull, we assume that the shape parameter [math]\displaystyle{ \beta \,\! }[/math] is known a priori from past experience on identical or similar products. The advantage of doing this is that data sets with few or no failures can be analyzed.
|
The Weibull Distribution |
See an Example... |