ALTA ALTA Standard Folio Data IPL-Exponential: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{Template:NoSkin}}
{{Template:NoSkin}}
{| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
{| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;"
|-
|-
! scope="col" |  
| valign="middle" align="left" bgcolor=EEEEEE|[[Image: Webnotes-alta.png |center|195px]]
{{Font|Reliability Web Notes|12|tahoma|bold|Blue}}
|}
{| class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
|-
|-
| align="center" valign="middle" |{{Font|Standard Folio Data IPL-Exponential|11|tahoma|bold|gray}}
| valign="middle" |{{Font|Standard Folio Data IPL-Exponential|11|tahoma|bold|gray}}
|-
|-
| align="center" valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
| valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
|-
|-
| align="center" valign="middle" |
| valign="middle" |
==IPL-Exponential==
==IPL-Exponential==
<br>
The IPL-exponential model can be derived by setting  <math>m=L(V)</math>  in Eqn. (inverse), yielding the following IPL-exponential  <math>pdf</math> :
The IPL-exponential model can be derived by setting  <math>m=L(V)</math>  in Eqn. (inverse), yielding the following IPL-exponential  <math>pdf</math> :
<br>
<br>
::<math>f(t,V)=K{{V}^{n}}{{e}^{-K{{V}^{n}}t}}</math>
<math>f(t,V)=K{{V}^{n}}{{e}^{-K{{V}^{n}}t}}</math>
 
<br>
<br>
Note that this is a 2-parameter model. The failure rate (the parameter of the exponential distribution) of the model is simply  <math>\lambda =K{{V}^{n}},</math>  and is only a function of stress.
Note that this is a 2-parameter model. The failure rate (the parameter of the exponential distribution) of the model is simply  <math>\lambda =K{{V}^{n}},</math>  and is only a function of stress.
<br>
<br>
[[Image:ALTA8.4.gif|thumb|center|300px|IPL-exponential failure rate function at different stress levels.]]
[[Image:ALTA8.4.gif|200px|IPL-exponential failure rate function at different stress levels.]]
 
|-
|-
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Ipl_exponential#IPL-Exponential IPL-Exponential]
| valign="middle" | [http://reliawiki.com/index.php/Template:Ipl_exponential#IPL-Exponential IPL-Exponential]


|}
|}

Revision as of 21:57, 10 February 2012

Webnotes-alta.png
Standard Folio Data IPL-Exponential
ALTA

IPL-Exponential

The IPL-exponential model can be derived by setting [math]\displaystyle{ m=L(V) }[/math] in Eqn. (inverse), yielding the following IPL-exponential [math]\displaystyle{ pdf }[/math] :
[math]\displaystyle{ f(t,V)=K{{V}^{n}}{{e}^{-K{{V}^{n}}t}} }[/math]
Note that this is a 2-parameter model. The failure rate (the parameter of the exponential distribution) of the model is simply [math]\displaystyle{ \lambda =K{{V}^{n}}, }[/math] and is only a function of stress.
IPL-exponential failure rate function at different stress levels.

IPL-Exponential



Docedit.png