ALTA ALTA Standard Folio Data Eyring-Weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{Template:NoSkin}}
{{Template:NoSkin}}
{| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
{| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;"
|-
| valign="middle" align="left" bgcolor=EEEEEE|[[Image: Webnotes-alta.png |center|195px]]
|}
{|  class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
|-
|-
! scope="col" |  
! scope="col" |  
{{Font|Reliability Web Notes|12|tahoma|bold|Blue}}
{{Font|Reliability Web Notes|12|tahoma|bold|Blue}}
|-
|-
| align="center" valign="middle" |{{Font|Standard Folio Data Eyring-Weibull|11|tahoma|bold|gray}}
| valign="middle" |{{Font|Standard Folio Data Eyring-Weibull|11|tahoma|bold|gray}}
|-
|-
| align="center" valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
| valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
|-
|-
| align="center" valign="middle" |
| valign="middle" |
The  <math>pdf</math>  for 2-parameter Weibull distribution is given by:
The  <math>pdf</math>  for 2-parameter Weibull distribution is given by:
<br>
<br>
::<math>f(t)=\frac{\beta }{\eta }{{\left( \frac{t}{\eta } \right)}^{\beta -1}}{{e}^{-{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}</math>
<math>f(t)=\frac{\beta }{\eta }{{\left( \frac{t}{\eta } \right)}^{\beta -1}}{{e}^{-{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}}</math>
 
<br>
<br>
The scale parameter (or characteristic life) of the Weibull distribution is  <math>\eta </math> . The Eyring-Weibull model  <math>pdf</math>  can then be obtained by setting  <math>\eta =L(V)</math>  in Eqn. (eyring):
The scale parameter (or characteristic life) of the Weibull distribution is  <math>\eta </math> . The Eyring-Weibull model  <math>pdf</math>  can then be obtained by setting  <math>\eta =L(V)</math>  in Eqn. (eyring):
<br>
<br>
::<math>\eta =L(V)=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}</math>
<math>\eta =L(V)=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}</math>
 
<br>
<br>
:or:
or:
 
<br>
<br>
::<math>\frac{1}{\eta }=V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}</math>
<math>\frac{1}{\eta }=V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}</math>
 
<br>
<br>
Substituting for  <math>\eta </math>  into Eqn. (Eyrpdf):
Substituting for  <math>\eta </math>  into Eqn. (Eyrpdf):
<br>
<br>
::<math>f(t,V)=\beta \cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}{{\left( t\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta -1}}{{e}^{-{{\left( t\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta }}}}</math>
<math>f(t,V)=\beta \cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}{{\left( t\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta -1}}{{e}^{-{{\left( t\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta }}}}</math>
 
|-
|-
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Alta_eyring-weibull#Eyring-Weibull Get More Details...]
| valign="middle" | [http://reliawiki.com/index.php/Template:Alta_eyring-weibull#Eyring-Weibull Get More Details...]
 
|}
|}
<br>  
<br>  


[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=ALTA_ALTA_Standard_Folio_Data_Eyring-Weibull&action=edit]]
[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=ALTA_ALTA_Standard_Folio_Data_Eyring-Weibull&action=edit]]

Revision as of 21:49, 10 February 2012

Webnotes-alta.png

Reliability Web Notes

Standard Folio Data Eyring-Weibull
ALTA

The [math]\displaystyle{ pdf }[/math] for 2-parameter Weibull distribution is given by:
[math]\displaystyle{ f(t)=\frac{\beta }{\eta }{{\left( \frac{t}{\eta } \right)}^{\beta -1}}{{e}^{-{{\left( \tfrac{t}{\eta } \right)}^{\beta }}}} }[/math]
The scale parameter (or characteristic life) of the Weibull distribution is [math]\displaystyle{ \eta }[/math] . The Eyring-Weibull model [math]\displaystyle{ pdf }[/math] can then be obtained by setting [math]\displaystyle{ \eta =L(V) }[/math] in Eqn. (eyring):
[math]\displaystyle{ \eta =L(V)=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}} }[/math]
or:
[math]\displaystyle{ \frac{1}{\eta }=V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} }[/math]
Substituting for [math]\displaystyle{ \eta }[/math] into Eqn. (Eyrpdf):
[math]\displaystyle{ f(t,V)=\beta \cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}{{\left( t\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta -1}}{{e}^{-{{\left( t\cdot V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}} \right)}^{\beta }}}} }[/math]

Get More Details...


Docedit.png