ALTA ALTA Standard Folio Data Arrhenius-Lognormal: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Template:NoSkin}} | {{Template:NoSkin}} | ||
{| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1" | {| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;" | ||
|- | |||
| valign="middle" align="left" bgcolor=EEEEEE|[[Image: Webnotes-alta.png |center|195px]] | |||
|} | |||
{| class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1" | |||
|- | |- | ||
! scope="col" | | ! scope="col" | | ||
{{Font|Reliability Web Notes|12|tahoma|bold|Blue}} | {{Font|Reliability Web Notes|12|tahoma|bold|Blue}} | ||
|- | |- | ||
| | | valign="middle" |{{Font|Standard Folio Data Arrhenius-Lognormal|11|tahoma|bold|gray}} | ||
|- | |- | ||
| | | valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}} | ||
|- | |- | ||
| | | valign="middle" | | ||
<br> | <br> | ||
The <math>pdf</math> of the lognormal distribution is given by: | The <math>pdf</math> of the lognormal distribution is given by: | ||
Line 62: | Line 66: | ||
<br> | <br> | ||
|- | |- | ||
| | | valign="middle" | [http://reliawiki.com/index.php/Template:Alta_al#Arrhenius-Lognormal Get More Details...] | ||
|} | |} |
Revision as of 21:41, 10 February 2012
Reliability Web Notes |
---|
Standard Folio Data Arrhenius-Lognormal |
ALTA |
• [math]\displaystyle{ {T}'= }[/math] mean of the natural logarithms of the times-to-failure. • [math]\displaystyle{ T= }[/math] times-to-failure. • [math]\displaystyle{ {{\sigma }_{{{T}'}}}= }[/math] standard deviation of the natural logarithms of the times-to-failure.
The Arrhenius-lognormal model [math]\displaystyle{ pdf }[/math] can be obtained first by setting [math]\displaystyle{ \breve{T}=L(V) }[/math] in Eqn. (arrhenius). Therefore: [math]\displaystyle{ \breve{T}=L(V)=C{{e}^{\tfrac{B}{V}}} }[/math] or: [math]\displaystyle{ {{e}^{{{\overline{T}}^{\prime }}}}=C{{e}^{\tfrac{B}{V}}} }[/math] Thus: [math]\displaystyle{ {{\overline{T}}^{\prime }}=\ln (C)+\frac{B}{V} }[/math]
|
Get More Details... |