ALTA ALTA Standard Folio Data Arrhenius-Lognormal: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{Template:NoSkin}}
{{Template:NoSkin}}
{| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
{| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;"
|-
| valign="middle" align="left" bgcolor=EEEEEE|[[Image: Webnotes-alta.png |center|195px]]
|}
{|  class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
|-
|-
! scope="col" |  
! scope="col" |  
{{Font|Reliability Web Notes|12|tahoma|bold|Blue}}
{{Font|Reliability Web Notes|12|tahoma|bold|Blue}}
|-
|-
| align="center" valign="middle" |{{Font|Standard Folio Data Arrhenius-Lognormal|11|tahoma|bold|gray}}
| valign="middle" |{{Font|Standard Folio Data Arrhenius-Lognormal|11|tahoma|bold|gray}}
|-
|-
| align="center" valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
| valign="middle" | {{Font|ALTA|10|tahoma|bold|gray}}
|-
|-
| align="center" valign="middle" |
| valign="middle" |
<br>
<br>
The  <math>pdf</math>  of the lognormal distribution is given by:  
The  <math>pdf</math>  of the lognormal distribution is given by:  
Line 62: Line 66:
<br>
<br>
|-
|-
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Alta_al#Arrhenius-Lognormal Get More Details...]
| valign="middle" | [http://reliawiki.com/index.php/Template:Alta_al#Arrhenius-Lognormal Get More Details...]


|}
|}

Revision as of 21:41, 10 February 2012

Webnotes-alta.png

Reliability Web Notes

Standard Folio Data Arrhenius-Lognormal
ALTA


The [math]\displaystyle{ pdf }[/math] of the lognormal distribution is given by:

[math]\displaystyle{ f(T)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\bar{{{T}'}}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}} }[/math]


where:


[math]\displaystyle{ {T}'=\ln(T) }[/math]


and:
[math]\displaystyle{ T= }[/math] times-to-failure.

[math]\displaystyle{ {T}'= }[/math] mean of the natural logarithms of the times-to-failure.

[math]\displaystyle{ T= }[/math] times-to-failure.

[math]\displaystyle{ {{\sigma }_{{{T}'}}}= }[/math] standard deviation of the natural logarithms of the times-to-failure.

The median of the lognormal distribution is given by:


[math]\displaystyle{ \breve{T}={{e}^{{{\overline{T}}^{\prime }}}} }[/math]


The Arrhenius-lognormal model [math]\displaystyle{ pdf }[/math] can be obtained first by setting [math]\displaystyle{ \breve{T}=L(V) }[/math] in Eqn. (arrhenius). Therefore:

[math]\displaystyle{ \breve{T}=L(V)=C{{e}^{\tfrac{B}{V}}} }[/math]

or:

[math]\displaystyle{ {{e}^{{{\overline{T}}^{\prime }}}}=C{{e}^{\tfrac{B}{V}}} }[/math]

Thus:

[math]\displaystyle{ {{\overline{T}}^{\prime }}=\ln (C)+\frac{B}{V} }[/math]


Substituting Eqn. (arrh-logn-mean) into Eqn. (arrh-logn-pdf) yields the Arrhenius-lognormal model [math]\displaystyle{ pdf }[/math] or:

[math]\displaystyle{ f(T,V)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\ln (C)-\tfrac{B}{V}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}} }[/math]


Note that in Eqn. (arrh-logn-pdf), it was assumed that the standard deviation of the natural logarithms of the times-to-failure, [math]\displaystyle{ {{\sigma }_{{{T}'}}}, }[/math] is independent of stress. This assumption implies that the shape of the distribution does not change with stress ( [math]\displaystyle{ {{\sigma }_{{{T}'}}} }[/math] is the shape parameter of the lognormal distribution).

Get More Details...



Docedit.png