Weibull++ Non-Parametric RDA Data: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{Template:NoSkin}}
{{Template:NoSkin}}
{| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
{| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;"
|-
|-
! scope="col" |  
| valign="middle" align="left" bgcolor=EEEEEE|[[Image:Webnotesbar.png|center|195px]]
{{Font|Reliability Web Notes|12|tahoma|bold|Blue}}
|}
{| class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
|-
|-
| align="center" valign="middle" |{{Font|Non-Parametric RDA Data|11|tahoma|bold|gray}}
| valign="middle" |{{Font|Non-Parametric RDA Data|11|tahoma|bold|gray}}
|-
|-
| align="center" valign="middle" | {{Font|Weibull++|10|tahoma|bold|gray}}
| valign="middle" | {{Font|Weibull++|10|tahoma|bold|gray}}
|-
|-
| align="center" valign="middle" |
| valign="middle" |
Non-parametric recurrence data analysis provides a nonparametric graphical estimate of the mean cumulative number or cost of recurrence per unit versus age. In the reliability field, the Mean Cumulative Function (MCF) can be used to: [31]
Non-parametric recurrence data analysis provides a nonparametric graphical estimate of the mean cumulative number or cost of recurrence per unit versus age. In the reliability field, the Mean Cumulative Function (MCF) can be used to: [31]


Line 18: Line 19:
:• Reveal unexpected information and insight.
:• Reveal unexpected information and insight.
|-
|-
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Recurrent_events_data_analysis#Non-Parameteric_Recurrence_Data_Analysis Get More Details...]
| valign="middle" | [http://reliawiki.com/index.php/Template:Recurrent_events_data_analysis#Non-Parameteric_Recurrence_Data_Analysis Get More Details...]
|-
|-
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Non-parametric_LDA_Examples See Examples...]
| valign="middle" | [http://reliawiki.com/index.php/Template:Non-parametric_LDA_Examples See Examples...]
|}
|}



Revision as of 22:10, 9 February 2012

Webnotesbar.png
Non-Parametric RDA Data
Weibull++

Non-parametric recurrence data analysis provides a nonparametric graphical estimate of the mean cumulative number or cost of recurrence per unit versus age. In the reliability field, the Mean Cumulative Function (MCF) can be used to: [31]

• Evaluate whether the population repair (or cost) rate increases or decreases with age (this is useful for product retirement and burn-in decisions).
• Estimate the average number or cost of repairs per unit during warranty or some time period.
• Compare two or more sets of data from different designs, production periods, maintenance policies, environments, operating conditions, etc.
• Predict future numbers and costs of repairs, such as, the next month, quarter, or year.
• Reveal unexpected information and insight.
Get More Details...
See Examples...



Docedit.png