Weibull++ Non-Parametric RDA Data: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Template:NoSkin}} | {{Template:NoSkin}} | ||
{| | {| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;" | ||
|- | |- | ||
| valign="middle" align="left" bgcolor=EEEEEE|[[Image:Webnotesbar.png|center|195px]] | |||
|} | |||
{| class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1" | |||
|- | |- | ||
| | | valign="middle" |{{Font|Non-Parametric RDA Data|11|tahoma|bold|gray}} | ||
|- | |- | ||
| | | valign="middle" | {{Font|Weibull++|10|tahoma|bold|gray}} | ||
|- | |- | ||
| | | valign="middle" | | ||
Non-parametric recurrence data analysis provides a nonparametric graphical estimate of the mean cumulative number or cost of recurrence per unit versus age. In the reliability field, the Mean Cumulative Function (MCF) can be used to: [31] | Non-parametric recurrence data analysis provides a nonparametric graphical estimate of the mean cumulative number or cost of recurrence per unit versus age. In the reliability field, the Mean Cumulative Function (MCF) can be used to: [31] | ||
Line 18: | Line 19: | ||
:• Reveal unexpected information and insight. | :• Reveal unexpected information and insight. | ||
|- | |- | ||
| | | valign="middle" | [http://reliawiki.com/index.php/Template:Recurrent_events_data_analysis#Non-Parameteric_Recurrence_Data_Analysis Get More Details...] | ||
|- | |- | ||
| | | valign="middle" | [http://reliawiki.com/index.php/Template:Non-parametric_LDA_Examples See Examples...] | ||
|} | |} | ||
Revision as of 22:10, 9 February 2012
Non-Parametric RDA Data |
Weibull++ |
Non-parametric recurrence data analysis provides a nonparametric graphical estimate of the mean cumulative number or cost of recurrence per unit versus age. In the reliability field, the Mean Cumulative Function (MCF) can be used to: [31]
|
Get More Details... |
See Examples... |