Weibull++ Standard Folio Data 3P-Weibull: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;" | {| class="FCK__ShowTableBorders" border="0" cellspacing="0" cellpadding="0" align="center"; style="width:100%;" | ||
|- | |- | ||
| valign="middle" align="left" bgcolor=DDDDDD|[[Image:Webnotesbar.png|center| | | valign="middle" align="left" bgcolor=DDDDDD|[[Image:Webnotesbar.png|center|195px]] | ||
|} | |} | ||
Revision as of 15:56, 8 February 2012
The Three-Parameter Weibull DistributionThe three-parameter Weibull pdf is given by: [math]\displaystyle{ f(t)={ \frac{\beta }{\eta }}\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta -1}e^{-\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta }} }[/math] where, [math]\displaystyle{ f(t)\geq 0,\text{ }t\geq 0\text{ or }\gamma, }[/math] [math]\displaystyle{ \beta\gt 0\ \,\! }[/math], [math]\displaystyle{ \eta \gt 0 \,\! }[/math], [math]\displaystyle{ -\infty \lt \gamma \lt +\infty \,\! }[/math] and, [math]\displaystyle{ \eta= \,\! }[/math] scale parameter, or characteristic life [math]\displaystyle{ \beta= \,\! }[/math] shape parameter (or slope), [math]\displaystyle{ \gamma= \,\! }[/math] location parameter (or failure free life). |
The Weibull Distribution |