Template:Bounds on Time FMB ED: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '====Bounds on Time==== The bounds around time for a given exponential percentile, or reliability value, are estimated by first solving the reliability equation with respect to t…')
 
Line 4: Line 4:




::<math>\hat{T}=-\frac{1}{{\hat{\lambda }}}\cdot \ln (R)+\hat{\gamma }</math>
::<math>\hat{t}=-\frac{1}{{\hat{\lambda }}}\cdot \ln (R)+\hat{\gamma }</math>




Line 11: Line 11:


::<math>\begin{align}
::<math>\begin{align}
   & {{T}_{U}}= & -\frac{1}{{{\lambda }_{L}}}\cdot \ln (R)+\hat{\gamma } \\  
   & {{t}_{U}}= & -\frac{1}{{{\lambda }_{L}}}\cdot \ln (R)+\hat{\gamma } \\  
  & {{T}_{L}}= & -\frac{1}{{{\lambda }_{U}}}\cdot \ln (R)+\hat{\gamma }   
  & {{t}_{L}}= & -\frac{1}{{{\lambda }_{U}}}\cdot \ln (R)+\hat{\gamma }   
\end{align}</math>
\end{align}</math>




The same equations apply for the one-parameter exponential with <math>\gamma =0.</math>
The same equations apply for the one-parameter exponential with <math>\gamma =0.</math>

Revision as of 23:50, 7 February 2012

Bounds on Time

The bounds around time for a given exponential percentile, or reliability value, are estimated by first solving the reliability equation with respect to time, or reliable life:


[math]\displaystyle{ \hat{t}=-\frac{1}{{\hat{\lambda }}}\cdot \ln (R)+\hat{\gamma } }[/math]


The corresponding confidence bounds are estimated from:


[math]\displaystyle{ \begin{align} & {{t}_{U}}= & -\frac{1}{{{\lambda }_{L}}}\cdot \ln (R)+\hat{\gamma } \\ & {{t}_{L}}= & -\frac{1}{{{\lambda }_{U}}}\cdot \ln (R)+\hat{\gamma } \end{align} }[/math]


The same equations apply for the one-parameter exponential with [math]\displaystyle{ \gamma =0. }[/math]