Template:Exponential Reliability Function: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '===The Exponential Reliability Function=== The equation for the two-parameter exponential cumulative density function, or <math>cdf,</math> is given by: ::<math>F(T)=Q(T)=1-{{e…')
 
Line 3: Line 3:




::<math>F(T)=Q(T)=1-{{e}^{-\lambda (T-\gamma )}}</math>
::<math>F(t)=Q(t)=1-{{e}^{-\lambda (t-\gamma )}}</math>




Line 9: Line 9:




::<math>R(T)=1-Q(T)=1-\int_{0}^{T-\gamma }f(T)dT</math>
::<math>R(t)=1-Q(t)=1-\int_{0}^{t-\gamma }f(x)dx</math>






::<math>R(T)=1-\int_{0}^{T-\gamma }\lambda {{e}^{-\lambda T}}dT={{e}^{-\lambda (T-\gamma )}}</math>
::<math>R(t)=1-\int_{0}^{t-\gamma }\lambda {{e}^{-\lambda x}}dx={{e}^{-\lambda (t-\gamma )}}</math>

Revision as of 23:13, 7 February 2012

The Exponential Reliability Function

The equation for the two-parameter exponential cumulative density function, or [math]\displaystyle{ cdf, }[/math] is given by:


[math]\displaystyle{ F(t)=Q(t)=1-{{e}^{-\lambda (t-\gamma )}} }[/math]


Recalling that the reliability function of a distribution is simply one minus the [math]\displaystyle{ cdf }[/math], the reliability function of the two-parameter exponential distribution is given by:


[math]\displaystyle{ R(t)=1-Q(t)=1-\int_{0}^{t-\gamma }f(x)dx }[/math]


[math]\displaystyle{ R(t)=1-\int_{0}^{t-\gamma }\lambda {{e}^{-\lambda x}}dx={{e}^{-\lambda (t-\gamma )}} }[/math]