Weibull++ Standard Folio Data 2P-Weibull: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 10: | Line 10: | ||
|- | |- | ||
| valign="middle" | | | valign="middle" | | ||
{{ | ====Two-Parameter Weibull Distribution==== | ||
The two-parameter Weibull ''pdf'' is obtained by setting | |||
<math> \gamma=0 \,\!</math>, and is given by: | |||
<math> f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\!</math> | |||
|- | |- | ||
| valign="middle" | [http://www.reliawiki.com/index.php/The_Weibull_Distribution The Weibull Distribution] | | valign="middle" | [http://www.reliawiki.com/index.php/The_Weibull_Distribution The Weibull Distribution] |
Revision as of 21:27, 7 February 2012
Reliability Web Notes |
Two-Parameter Weibull DistributionThe two-parameter Weibull pdf is obtained by setting [math]\displaystyle{ \gamma=0 \,\! }[/math], and is given by: [math]\displaystyle{ f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\! }[/math] |
The Weibull Distribution |