Weibull++ Standard Folio Data 1P-Weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 14: Line 14:
<math>\gamma=0 \,\!</math> and assuming <math>\beta=C=Constant \,\!</math> assumed value or:  
<math>\gamma=0 \,\!</math> and assuming <math>\beta=C=Constant \,\!</math> assumed value or:  


[[Image:weibullreliabilityfunction.png|center]]
[[Image:weibullreliabilityfunction.gif]]


where the only unknown parameter is the scale parameter, <math>\eta\,\!</math>.  
where the only unknown parameter is the scale parameter, <math>\eta\,\!</math>.  

Revision as of 21:21, 7 February 2012

 

Webnotesbar.png


The One-Parameter Weibull Distribution

The one-parameter Weibull reliability function is obtained by again setting [math]\displaystyle{ \gamma=0 \,\! }[/math] and assuming [math]\displaystyle{ \beta=C=Constant \,\! }[/math] assumed value or:

Weibullreliabilityfunction.gif

where the only unknown parameter is the scale parameter, [math]\displaystyle{ \eta\,\! }[/math].

Note that in the formulation of the one-parameter Weibull, we assume that the shape parameter [math]\displaystyle{ \beta \,\! }[/math] is known a priori from past experience on identical or similar products. The advantage of doing this is that data sets with few or no failures can be analyzed.


The Weibull Distribution


Docedit.png