Weibull++ Standard Folio Data 3P-Weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:
! scope="col" |  
! scope="col" |  
{{Font|Reliability Web Notes|12|tahoma|bold|Blue}}
{{Font|Reliability Web Notes|12|tahoma|bold|Blue}}
|-
| align="center" valign="middle" |{{Font|Weibull Folio|11|tahoma|bold|gray}}
|-
| align="center" valign="middle" | {{Font|Life Data Analysis|10|tahoma|bold|gray}}
|-
| align="center" valign="middle" | {{Font|Three-Parameter Weibull Distribution|9|tahoma|bold|gray}}
|-
|-
| align="center" valign="middle" |
| align="center" valign="middle" |

Revision as of 17:18, 7 February 2012

Reliability Web Notes

The 3-parameter Weibull pdf is given by:

[math]\displaystyle{ f(t)={ \frac{\beta }{\eta }}\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta -1}e^{-\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta }} \,\! }[/math]

where:

[math]\displaystyle{ f(t)\geq 0,\text{ }t\geq \gamma \,\! }[/math]
[math]\displaystyle{ \beta\gt 0\ \,\! }[/math]
[math]\displaystyle{ \eta \gt 0 \,\! }[/math]
[math]\displaystyle{ -\infty \lt \gamma \lt +\infty \,\! }[/math]

and:

[math]\displaystyle{ \eta= \,\! }[/math] scale parameter, or characteristic life
[math]\displaystyle{ \beta= \,\! }[/math] shape parameter (or slope)
[math]\displaystyle{ \gamma= \,\! }[/math] location parameter (or failure free life)
The Weibull Distribution
See Examples...


Docedit.png