Template:Aw cdf and rf: Difference between revisions
Jump to navigation
Jump to search
(Created page with '====The <math>cdf</math> and the Reliability Function==== The <math>cdf</math> of the 2-parameter Weibull distribution is given by: ::<math>F(T)=1-{{e}^{-{{\left( \tfrac{T}{…') |
|||
Line 7: | Line 7: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
R(T)&= & 1-F(t) \\ | |||
& = & {{e}^{-{{\left( \tfrac{T}{\eta } \right)}^{\beta }}}} | & = & {{e}^{-{{\left( \tfrac{T}{\eta } \right)}^{\beta }}}} | ||
\end{align}</math> | \end{align}</math> |
Revision as of 23:56, 6 February 2012
The [math]\displaystyle{ cdf }[/math] and the Reliability Function
The [math]\displaystyle{ cdf }[/math] of the 2-parameter Weibull distribution is given by:
- [math]\displaystyle{ F(T)=1-{{e}^{-{{\left( \tfrac{T}{\eta } \right)}^{\beta }}}} }[/math]
The Weibull reliability function is given by:
- [math]\displaystyle{ \begin{align} R(T)&= & 1-F(t) \\ & = & {{e}^{-{{\left( \tfrac{T}{\eta } \right)}^{\beta }}}} \end{align} }[/math]