Template:Alta exponential reliability function: Difference between revisions
Jump to navigation
Jump to search
(Created page with '====The Reliability Function==== The 1-parameter exponential reliability function is given by: <br> ::<math>R(T)={{e}^{-\lambda T}}={{e}^{-\tfrac{T}{m}}}</math> <br> This functio…') |
|||
Line 6: | Line 6: | ||
This function is the complement of the exponential cumulative distribution function or: | This function is the complement of the exponential cumulative distribution function or: | ||
<br> | <br> | ||
::<math>R(T)=1-Q(T)=1-\ | ::<math>R(T)=1-Q(T)=1-\int_{0}^{T}f(T)dT</math> | ||
<br> | <br> | ||
:and: | :and: | ||
<br> | <br> | ||
::<math>R(T)=1-\ | ::<math>R(T)=1-\int_{0}^{T}\lambda {{e}^{-\lambda T}}dT={{e}^{-\lambda T}}</math> | ||
<br> | <br> |
Revision as of 23:40, 6 February 2012
The Reliability Function
The 1-parameter exponential reliability function is given by:
- [math]\displaystyle{ R(T)={{e}^{-\lambda T}}={{e}^{-\tfrac{T}{m}}} }[/math]
This function is the complement of the exponential cumulative distribution function or:
- [math]\displaystyle{ R(T)=1-Q(T)=1-\int_{0}^{T}f(T)dT }[/math]
- and:
- [math]\displaystyle{ R(T)=1-\int_{0}^{T}\lambda {{e}^{-\lambda T}}dT={{e}^{-\lambda T}} }[/math]