Template:Loglogistic probability density function: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '====Loglogistic Probability Density Function==== The loglogistic distribution is a two-parameter distribution with parameters <math>\mu </math> and <math>\sigma </math> . The …')
 
Line 2: Line 2:
The loglogistic distribution is a two-parameter distribution with parameters  <math>\mu </math>  and  <math>\sigma </math> . The  <math>pdf</math>  for this distribution is given by:  
The loglogistic distribution is a two-parameter distribution with parameters  <math>\mu </math>  and  <math>\sigma </math> . The  <math>pdf</math>  for this distribution is given by:  


::<math>f(T)=\frac{{{e}^{z}}}{\sigma T{{(1+{{e}^{z}})}^{2}}}</math>
::<math>f(t)=\frac{{{e}^{z}}}{\sigma {t}{{(1+{{e}^{z}})}^{2}}}</math>


:where:  
:where:  


::<math>z=\frac{{T}'-\mu }{\sigma }</math>
::<math>z=\frac{{t}'-\mu }{\sigma }</math>


::<math>{T}'=\ln (T)</math>
::<math>{t}'=\ln (t)</math>


:and:  
:and:  

Revision as of 23:07, 3 February 2012

Loglogistic Probability Density Function

The loglogistic distribution is a two-parameter distribution with parameters [math]\displaystyle{ \mu }[/math] and [math]\displaystyle{ \sigma }[/math] . The [math]\displaystyle{ pdf }[/math] for this distribution is given by:

[math]\displaystyle{ f(t)=\frac{{{e}^{z}}}{\sigma {t}{{(1+{{e}^{z}})}^{2}}} }[/math]
where:
[math]\displaystyle{ z=\frac{{t}'-\mu }{\sigma } }[/math]
[math]\displaystyle{ {t}'=\ln (t) }[/math]
and:
[math]\displaystyle{ \begin{align} & \mu = & \text{scale parameter} \\ & \sigma = & \text{shape parameter} \end{align} }[/math]

where [math]\displaystyle{ 0\lt t\lt \infty }[/math] , [math]\displaystyle{ -\infty \lt \mu \lt \infty }[/math] and [math]\displaystyle{ 0\lt \sigma \lt \infty }[/math] .