Template:Loglogistic probability density function: Difference between revisions
Jump to navigation
Jump to search
(Created page with '====Loglogistic Probability Density Function==== The loglogistic distribution is a two-parameter distribution with parameters <math>\mu </math> and <math>\sigma </math> . The …') |
|||
Line 2: | Line 2: | ||
The loglogistic distribution is a two-parameter distribution with parameters <math>\mu </math> and <math>\sigma </math> . The <math>pdf</math> for this distribution is given by: | The loglogistic distribution is a two-parameter distribution with parameters <math>\mu </math> and <math>\sigma </math> . The <math>pdf</math> for this distribution is given by: | ||
::<math>f( | ::<math>f(t)=\frac{{{e}^{z}}}{\sigma {t}{{(1+{{e}^{z}})}^{2}}}</math> | ||
:where: | :where: | ||
::<math>z=\frac{{ | ::<math>z=\frac{{t}'-\mu }{\sigma }</math> | ||
::<math>{ | ::<math>{t}'=\ln (t)</math> | ||
:and: | :and: |
Revision as of 23:07, 3 February 2012
Loglogistic Probability Density Function
The loglogistic distribution is a two-parameter distribution with parameters [math]\displaystyle{ \mu }[/math] and [math]\displaystyle{ \sigma }[/math] . The [math]\displaystyle{ pdf }[/math] for this distribution is given by:
- [math]\displaystyle{ f(t)=\frac{{{e}^{z}}}{\sigma {t}{{(1+{{e}^{z}})}^{2}}} }[/math]
- where:
- [math]\displaystyle{ z=\frac{{t}'-\mu }{\sigma } }[/math]
- [math]\displaystyle{ {t}'=\ln (t) }[/math]
- and:
- [math]\displaystyle{ \begin{align} & \mu = & \text{scale parameter} \\ & \sigma = & \text{shape parameter} \end{align} }[/math]
where [math]\displaystyle{ 0\lt t\lt \infty }[/math] , [math]\displaystyle{ -\infty \lt \mu \lt \infty }[/math] and [math]\displaystyle{ 0\lt \sigma \lt \infty }[/math] .