Weibull++ Standard Folio Data 3P-Weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{Template:NoSkin}}
{{Template:NoSkin}}
{| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
{| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1"
|-
| align="center" valign="middle" | [[Image:weibullworld.gif|center]]
|-
|-
! scope="col" |  
! scope="col" |  
Line 20: Line 22:
| align="center" valign="middle" | [http://www.reliawiki.com/index.php/Weibull_Examples_3P See Examples...]
| align="center" valign="middle" | [http://www.reliawiki.com/index.php/Weibull_Examples_3P See Examples...]
|}
|}
<br>  
<br>
 
 
[[File:docedit.png|20px|right|link=http://www.reliawiki.com/index.php?title=Weibull%2B%2B_Standard_Folio_Data_3P-Weibull&action=edit]]

Revision as of 15:45, 27 January 2012

Weibullworld.gif

Reliability Web Notes

Weibull Folio
Life Data Analysis
Three-Parameter Weibull Distribution

The 3-parameter Weibull pdf is given by:

[math]\displaystyle{ f(t)={ \frac{\beta }{\eta }}\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta -1}e^{-\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta }} \,\! }[/math]

where:

[math]\displaystyle{ f(t)\geq 0,\text{ }t\geq \gamma \,\! }[/math]
[math]\displaystyle{ \beta\gt 0\ \,\! }[/math]
[math]\displaystyle{ \eta \gt 0 \,\! }[/math]
[math]\displaystyle{ -\infty \lt \gamma \lt +\infty \,\! }[/math]

and:

[math]\displaystyle{ \eta= \,\! }[/math] scale parameter, or characteristic life
[math]\displaystyle{ \beta= \,\! }[/math] shape parameter (or slope)
[math]\displaystyle{ \gamma= \,\! }[/math] location parameter (or failure free life)
The Weibull Distribution
See Examples...