ALTA ALTA Standard Folio Data IPL-Weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 19: Line 19:
This is a three parameter model. Therefore it is more flexible but it also requires more laborious techniques for parameter estimation. The IPL-Weibull model yields the IPL-exponential model for  <math>\beta =1.</math>  
This is a three parameter model. Therefore it is more flexible but it also requires more laborious techniques for parameter estimation. The IPL-Weibull model yields the IPL-exponential model for  <math>\beta =1.</math>  
|-
|-
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Ipl_weibull#IPL-Weibull Get More Details...]
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Ipl_weibull#IPL-Weibull IPL-Weibull]


|}
|}

Revision as of 16:56, 24 January 2012

Reliability Web Notes

Standard Folio Data IPL-Weibull
ALTA


The IPL-Weibull model can be derived by setting [math]\displaystyle{ \eta =L(V) }[/math] , yielding the following IPL-Weibull [math]\displaystyle{ pdf\ \ : }[/math]


[math]\displaystyle{ f(t,V)=\beta K{{V}^{n}}{{\left( K{{V}^{n}}t \right)}^{\beta -1}}{{e}^{-{{\left( K{{V}^{n}}t \right)}^{\beta }}}} }[/math]


This is a three parameter model. Therefore it is more flexible but it also requires more laborious techniques for parameter estimation. The IPL-Weibull model yields the IPL-exponential model for [math]\displaystyle{ \beta =1. }[/math]

IPL-Weibull



Docedit.png