ALTA ALTA Standard Folio Data IPL-Exponential: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 23: Line 23:


|-
|-
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Ipl_exponential#IPL-Exponential Get More Details...]
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Ipl_exponential#IPL-Exponential IPL-Exponential]
|-
 
| align="center" valign="middle" | [Link2 See Examples...]
|}
|}



Revision as of 16:55, 24 January 2012

Reliability Web Notes

Standard Folio Data IPL-Exponential
ALTA

IPL-Exponential


The IPL-exponential model can be derived by setting [math]\displaystyle{ m=L(V) }[/math] in Eqn. (inverse), yielding the following IPL-exponential [math]\displaystyle{ pdf }[/math] :


[math]\displaystyle{ f(t,V)=K{{V}^{n}}{{e}^{-K{{V}^{n}}t}} }[/math]


Note that this is a 2-parameter model. The failure rate (the parameter of the exponential distribution) of the model is simply [math]\displaystyle{ \lambda =K{{V}^{n}}, }[/math] and is only a function of stress.

IPL-exponential failure rate function at different stress levels.
IPL-Exponential



Docedit.png