Weibull++ Standard Folio Data 3P-Weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 12: Line 12:
|-
|-
| align="center" valign="middle" |
| align="center" valign="middle" |
The Weibull distribution is one of the most widely used lifetime distributions in reliability engineering. It can model an increasing, decreasing and or constant failure rate behavior.  The 3-parameter Weibull includes a location parameter gamma. It's pdf is given by:
{{three-parameter weibull distribution}}
|-
|-
| align="center" valign="middle" |
| align="center" valign="middle" |
<br><math> f(T)={ \frac{\beta }{\eta }}\left( {\frac{T-\gamma}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T-\gamma}{\eta }}\right) ^{\beta }} \,\!</math>
<br>Beta is the shape parameter or slope. Values less than one incicate a decreasing failure rate, greater then one an increasing failure rate, and when one a constant failure rate. Eta is the scale parameter, or characteristic life.  Eta represents the time by which 63.2% of the units fail.
Gamma is the location parameter that determines the starting location of the distribution. If gamma is positive it implies that no failutes can occur until time gamma is reached. <br>
|-
|-
| align="center" valign="middle" | [http://www.reliawiki.com/index.php/The_Weibull_Distribution The Weibull Distribution]
| align="center" valign="middle" | [http://www.reliawiki.com/index.php/The_Weibull_Distribution The Weibull Distribution]

Revision as of 16:03, 24 January 2012

Reliability Web Notes

Weibull Folio
Life Data Analysis
Three-Parameter Weibull Distribution

The 3-parameter Weibull pdf is given by:

[math]\displaystyle{ f(t)={ \frac{\beta }{\eta }}\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta -1}e^{-\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta }} \,\! }[/math]

where:

[math]\displaystyle{ f(t)\geq 0,\text{ }t\geq \gamma \,\! }[/math]
[math]\displaystyle{ \beta\gt 0\ \,\! }[/math]
[math]\displaystyle{ \eta \gt 0 \,\! }[/math]
[math]\displaystyle{ -\infty \lt \gamma \lt +\infty \,\! }[/math]

and:

[math]\displaystyle{ \eta= \,\! }[/math] scale parameter, or characteristic life
[math]\displaystyle{ \beta= \,\! }[/math] shape parameter (or slope)
[math]\displaystyle{ \gamma= \,\! }[/math] location parameter (or failure free life)
The Weibull Distribution
See Examples...



Docedit.png