ALTA ALTA Standard Folio Data Eyring-Lognormal: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '{{Template:NoSkin}} {| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1" |- ! scope="col" | {{Font|Reliability Web Notes|12|tahoma|bold|Blu…')
 
No edit summary
Line 10: Line 10:
|-
|-
| align="center" valign="middle" |
| align="center" valign="middle" |
Content 1
The  <math>pdf</math>  of the lognormal distribution is given by:
 
<br>
<math>f(T)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\overline{{{T}'}}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math>
 
<br>
where:
 
<br>
<math>{T}'=\ln (T)</math>
 
<br>
<math>T=\text{times-to-failure}</math>
 
<br>
:and:
<br>
• <math>\overline{{{T}'}}=</math> mean of the natural logarithms of the times-to-failure.
 
• <math>{{\sigma }_{{{T}'}}}=</math> standard deviation of the natural logarithms of the times-to-failure.
 
<br>
The Eyring-lognormal model can be obtained first by setting  <math>\breve{T}=L(V)</math> in Eqn. (eyring). Therefore:
 
<br>
<math>\breve{T}=L(V)=\frac{1}{V}{{e}^{-(A-\tfrac{B}{V})}}</math>
 
<br>
or:
<br>
<br>
<math>{{e}^{{{\overline{T}}^{\prime }}}}=\frac{1}{V}{{e}^{-(A-\tfrac{B}{V})}}</math>
 
<br>
Thus:
<br>
<br>
<math>{{\overline{T}}^{\prime }}=-\ln (V)-A+\frac{B}{V}</math>
 
 
<br>
Substituting Eqn. (eyr-logn-mean) into Eqn. (Eyr-logn-pdf) yields the Eyring-lognormal model  <math>pdf</math> 
or:
 
<math>f(T,V)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'+\ln (V)+A-\tfrac{B}{V}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math>
 
|-
|-
| align="center" valign="middle" |
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Erying-log#Eyring-Lognormal Get More Details...]
Content 2
|-
| align="center" valign="middle" | [Link1 Get More Details...]
|-
|-
| align="center" valign="middle" | [Link2 See Examples...]
| align="center" valign="middle" | [Link2 See Examples...]

Revision as of 22:20, 16 January 2012

Reliability Web Notes

Standard Folio Data Eyring-Lognormal
ALTA

The [math]\displaystyle{ pdf }[/math] of the lognormal distribution is given by:


[math]\displaystyle{ f(T)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\overline{{{T}'}}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}} }[/math]


where:


[math]\displaystyle{ {T}'=\ln (T) }[/math]


[math]\displaystyle{ T=\text{times-to-failure} }[/math]


and:


[math]\displaystyle{ \overline{{{T}'}}= }[/math] mean of the natural logarithms of the times-to-failure.

[math]\displaystyle{ {{\sigma }_{{{T}'}}}= }[/math] standard deviation of the natural logarithms of the times-to-failure.


The Eyring-lognormal model can be obtained first by setting [math]\displaystyle{ \breve{T}=L(V) }[/math] in Eqn. (eyring). Therefore:


[math]\displaystyle{ \breve{T}=L(V)=\frac{1}{V}{{e}^{-(A-\tfrac{B}{V})}} }[/math]


or:

[math]\displaystyle{ {{e}^{{{\overline{T}}^{\prime }}}}=\frac{1}{V}{{e}^{-(A-\tfrac{B}{V})}} }[/math]


Thus:

[math]\displaystyle{ {{\overline{T}}^{\prime }}=-\ln (V)-A+\frac{B}{V} }[/math]



Substituting Eqn. (eyr-logn-mean) into Eqn. (Eyr-logn-pdf) yields the Eyring-lognormal model [math]\displaystyle{ pdf }[/math] or:

[math]\displaystyle{ f(T,V)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'+\ln (V)+A-\tfrac{B}{V}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}} }[/math]

Get More Details...
[Link2 See Examples...]



Docedit.png