ALTA ALTA Standard Folio Data Eyring-Weibull: Difference between revisions
Jump to navigation
Jump to search
(Created page with '{{Template:NoSkin}} {| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1" |- ! scope="col" | {{Font|Reliability Web Notes|12|tahoma|bold|Blu…') |
No edit summary |
||
Line 10: | Line 10: | ||
|- | |- | ||
| align="center" valign="middle" | | | align="center" valign="middle" | | ||
The <math>pdf</math> of the 1-parameter exponential distribution is given by: | |||
<br> | |||
::<math>f(t)=\lambda \cdot {{e}^{-\lambda \cdot t}}</math> | |||
<br> | |||
It can be easily shown that the mean life for the 1-parameter exponential distribution (presented in detail in Chapter 5) is given by: | |||
<br> | |||
::<math>\lambda =\frac{1}{m}</math> | |||
<br> | |||
:thus: | |||
<br> | |||
::<math>f(t)=\frac{1}{m}\cdot {{e}^{-\tfrac{t}{m}}}</math> | |||
<br> | |||
The Eyring-exponential model <math>pdf</math> can then be obtained by setting <math>m=L(V)</math> in Eqn. (eyring): | |||
<br> | |||
::<math>m=L(V)=\frac{1}{V}{{e}^{-\left( A-\tfrac{B}{V} \right)}}</math> | |||
<br> | |||
and substituting for <math>m</math> in Eqn. (pdfexpm2): | |||
<br> | |||
::<math>f(t,V)=V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}{{e}^{-V\cdot {{e}^{\left( A-\tfrac{B}{V} \right)}}\cdot t}}</math> | |||
<br> | |||
|- | |- | ||
| align="center" valign="middle" | | | align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Alta_a-e.e-e#Eyring-Exponential Get More Details...] | ||
|- | |- | ||
| align="center" valign="middle" | [Link2 See Examples...] | | align="center" valign="middle" | [Link2 See Examples...] |
Revision as of 22:16, 16 January 2012
Reliability Web Notes |
---|
Standard Folio Data Eyring-Weibull |
ALTA |
The [math]\displaystyle{ pdf }[/math] of the 1-parameter exponential distribution is given by:
|
Get More Details... |
[Link2 See Examples...] |