ALTA ALTA Standard Folio Data TH-Lognormal: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 13: Line 13:
<br>
<br>


::<math>f(T)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\overline{{{T}'}}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math>
<math>f(T)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\overline{{{T}'}}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math>


<br>
<br>
Line 19: Line 19:


<br>
<br>
::<math>{T}'=\ln (T)</math>
<math>{T}'=\ln (T)</math>


<br>
<br>
::<math>T=\text{times-to-failure}</math>
<math>T=\text{times-to-failure}</math>


<br>
<br>
Line 28: Line 28:
<br>
<br>
• <math>\overline{{{T}'}}=</math> mean of the natural logarithms of the times-to-failure.
• <math>\overline{{{T}'}}=</math> mean of the natural logarithms of the times-to-failure.
• <math>{{\sigma }_{{{T}'}}}=</math> standard deviation of the natural logarithms of the times-to-failure.
• <math>{{\sigma }_{{{T}'}}}=</math> standard deviation of the natural logarithms of the times-to-failure.
|-
|-

Revision as of 18:16, 16 January 2012

Reliability Web Notes

Standard Folio Data TH-Lognormal
ALTA

The [math]\displaystyle{ pdf }[/math] of the lognormal distribution is given by:

[math]\displaystyle{ f(T)=\frac{1}{T\text{ }{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{T}'-\overline{{{T}'}}}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}} }[/math]


where:


[math]\displaystyle{ {T}'=\ln (T) }[/math]


[math]\displaystyle{ T=\text{times-to-failure} }[/math]


and:
[math]\displaystyle{ \overline{{{T}'}}= }[/math] mean of the natural logarithms of the times-to-failure.

[math]\displaystyle{ {{\sigma }_{{{T}'}}}= }[/math] standard deviation of the natural logarithms of the times-to-failure.

Get More Details...
[Link2 See Examples...]



Docedit.png