ALTA ALTA Standard Folio Data IPL-Lognormal: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '{{Template:NoSkin}} {| align="center" class="FCK__ShowTableBorders" border="0" cellspacing="1" cellpadding="1" |- ! scope="col" | {{Font|Reliability Web Notes|12|tahoma|bold|Blu…')
 
No edit summary
Line 10: Line 10:
|-
|-
| align="center" valign="middle" |
| align="center" valign="middle" |
Content 1
The IPL-lognormal model pdf can be obtained first by setting  = L(V) in Eqn. ( 30). Therefore:
 
 
::<math> \breve{T}=L(V)=\frac{1}{K*V^n}</math>
 
 
or:
 
::<math>e^{\overline{T'}}=\frac{1}{K*V^n}</math>
 
Thus:
 
::<math>\overline{T}'=-ln(K)-n ln(V) </math>(8)
 
|-
|-
| align="center" valign="middle" |
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Ipl_lognormal Get More Details...]
Content 2
|-
| align="center" valign="middle" | [Link1 Get More Details...]
|-
|-
| align="center" valign="middle" | [Link2 See Examples...]
| align="center" valign="middle" | [Link2 See Examples...]

Revision as of 18:04, 16 January 2012

Reliability Web Notes

Standard Folio Data IPL-Lognormal
ALTA

The IPL-lognormal model pdf can be obtained first by setting = L(V) in Eqn. ( 30). Therefore:


[math]\displaystyle{ \breve{T}=L(V)=\frac{1}{K*V^n} }[/math]


or:

[math]\displaystyle{ e^{\overline{T'}}=\frac{1}{K*V^n} }[/math]

Thus:

[math]\displaystyle{ \overline{T}'=-ln(K)-n ln(V) }[/math](8)
Get More Details...
[Link2 See Examples...]



Docedit.png