ALTA ALTA Standard Folio Data IPL-Exponential: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 10: Line 10:
|-
|-
| align="center" valign="middle" |
| align="center" valign="middle" |
Content 1
==IPL-Exponential==
|-
<br>
| align="center" valign="middle" |
The IPL-exponential model can be derived by setting  <math>m=L(V)</math>  in Eqn. (inverse), yielding the following IPL-exponential  <math>pdf</math> :
Content 2
 
<br>
::<math>f(t,V)=K{{V}^{n}}{{e}^{-K{{V}^{n}}t}}</math>
 
<br>
Note that this is a 2-parameter model. The failure rate (the parameter of the exponential distribution) of the model is simply  <math>\lambda =K{{V}^{n}},</math>  and is only a function of stress.
<br>
[[Image:ALTA8.4.gif|thumb|center|300px|IPL-exponential failure rate function at different stress levels.]]
 
|-
|-
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Ipl_exponential#IPL-Exponential Get More Details...]
| align="center" valign="middle" | [http://reliawiki.com/index.php/Template:Ipl_exponential#IPL-Exponential Get More Details...]

Revision as of 00:03, 14 January 2012

Reliability Web Notes

Standard Folio Data IPL-Exponential
ALTA

IPL-Exponential


The IPL-exponential model can be derived by setting [math]\displaystyle{ m=L(V) }[/math] in Eqn. (inverse), yielding the following IPL-exponential [math]\displaystyle{ pdf }[/math] :


[math]\displaystyle{ f(t,V)=K{{V}^{n}}{{e}^{-K{{V}^{n}}t}} }[/math]


Note that this is a 2-parameter model. The failure rate (the parameter of the exponential distribution) of the model is simply [math]\displaystyle{ \lambda =K{{V}^{n}}, }[/math] and is only a function of stress.

IPL-exponential failure rate function at different stress levels.
Get More Details...
[Link2 See Examples...]



Docedit.png