Weibull++ Standard Folio Data 2P-Weibull: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 8: Line 8:
|-
|-
| align="center" valign="middle" | {{Font|Life Data Analysis|10|tahoma|bold|gray}}
| align="center" valign="middle" | {{Font|Life Data Analysis|10|tahoma|bold|gray}}
|-
| align="center" valign="middle" | {{Font|Two-parameter Weibull Distribution|9|tahoma|bold|gray}}
|-
|-
| align="center" valign="middle" |
| align="center" valign="middle" |

Revision as of 18:41, 6 January 2012

Reliability Web Notes

Weibull Folio
Life Data Analysis
Two-parameter Weibull Distribution

The Weibull distribution is one of the most widely used lifetime distributions in reliability engineering. It can model an increasing, decreasing and or constant failure rate behavior. The 2-parameter Weibull is the most commonly used form of the distribution. It's pdf is given by:


[math]\displaystyle{ f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\! }[/math]
Beta is the shape parameter or slope. Values less than one incicate a decreasing failure rate, greater then one an increasing failure rate, and when one a constant failure rate. Eta is the scale parameter, or characteristic life. Eta represents the time by which 63.2% of the units fail.

[math]\displaystyle{ \beta= }[/math] shape parameter (or slope).

Get More Details...
See Examples...



Docedit.png