Weibull++ Standard Folio Data Lognormal: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 13: Line 13:
|-
|-
| align="center" valign="middle" |
| align="center" valign="middle" |
The lognormal distribution is a two-parameter distribution with parameters  <br>
The ''pdf'' is given by: <br>
<math>{\mu }'</math>  and  <math>{{\sigma }_{{{T}'}}}</math>. <br> The ''pdf'' is given by:  
<math>f({T}')=\frac{1}{{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{T}^{\prime }}-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math>
 
::<math>f({T}')=\frac{1}{{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{T}^{\prime }}-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}}</math>
<br> where,  
<br> where,  
<br><math>{T}'=\ln (T)</math><br>
<br><math>{T}'=\ln (T)</math><br>

Revision as of 19:09, 11 November 2011

Reliability Web Notes

Weibull Folio
Life Data Analysis

The lognormal distribution is commonly used to model the lives of units whose failure modes are of a fatigue-stress nature. It has an increasing failure rate behavior and then decreasing towards the end of life.

The pdf is given by:
[math]\displaystyle{ f({T}')=\frac{1}{{{\sigma }_{{{T}'}}}\sqrt{2\pi }}{{e}^{-\tfrac{1}{2}{{\left( \tfrac{{{T}^{\prime }}-{\mu }'}{{{\sigma }_{{{T}'}}}} \right)}^{2}}}} }[/math]
where,
[math]\displaystyle{ {T}'=\ln (T) }[/math]
the natural logarithm of the time-to-failure and
[math]\displaystyle{ \mu' \text{ and } \sigma_{T'} }[/math]
are the mean and standard deviation of of the natural logarithms of the times-to-failure.

Get More Details...
See Examples...










Docedit.png