Weibull++ Standard Folio Data 2P-Weibull: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 14: | Line 14: | ||
<math> f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\!</math> | <math> f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\!</math> | ||
<br>where<br> | <br>where<br> | ||
<math> \eta= \,\!</math> scale parameter, or characteristic life | <math> \eta= \,\!</math> scale parameter, or characteristic life, and <br> | ||
<math> \beta= \,\!</math> shape parameter (or slope). | <math> \beta= \,\!</math> shape parameter (or slope). | ||
|- | |- |
Revision as of 17:40, 11 November 2011
Reliability Web Notes |
---|
Weibull Folio |
Life Data Analysis |
The 2 parameter Weibull distribution pdf is given by |
[math]\displaystyle{ f(T)={ \frac{\beta }{\eta }}\left( {\frac{T}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{T}{\eta }}\right) ^{\beta }} \,\! }[/math]
|
Parameters |
More Details |
Examples |