Template:Least Squares/Rank Regression Equations: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
Line 77: Line 77:
::<math>y=-\frac{\hat{a}}{\hat{b}}+\frac{1}{\hat{b}} x </math>
::<math>y=-\frac{\hat{a}}{\hat{b}}+\frac{1}{\hat{b}} x </math>


====Illustrating with an Example====
==== Illustrating with an Example ====
Fit a least squares straight line using regression on X and regression on Y to the following data:


{|align="center" border="1" cellspacing="1"
Fit a least squares straight line using regression on X and regression on Y to the following data:
 
{| align="center" border="0" cellspacing="5" width="300" cellpadding="5"
|-
|-
|x|||1||2.5||4||6||8||9||11||15
! scope="row" | x
| align="right" | 1
| 2.5
| 4
| 6
| 8
| 9
| 11
| 15
|-
|-
|y||1.5||2||4||4||5||7||8||10
! scope="row" | y
|}  
| align="right" | 1.5
| 2
| 4
| 4
| 5
| 7
| 8
| align="right" valign="middle" | 10
|}


The first step is to generate the following table:
The first step is to generate the following table:  


{|align="center" border="1"
{| align="center" border="1"
|-
|-
|colspan="6" "text-align:center"|Table A.1 - Data analysis for the least squares method
| colspan="6" | Table A.1 - Data analysis for the least squares method
|-
|-
|<math>i</math>||<math>x_i</math>||<math>y_i</math>||<math>x_i^2</math>||<math>x_iy_i</math>||<math>y_i^2</math>
| <math>i</math>
| <math>x_i</math>
| <math>y_i</math>
| <math>x_i^2</math>
| <math>x_iy_i</math>
| <math>y_i^2</math>
|-
|-
|1||1||1.5||1||1.5||2.25
| 1
| 1
| 1.5
| 1
| 1.5
| 2.25
|-
|-
|2||2.5||2||6.25||5||4
| 2
| 2.5
| 2
| 6.25
| 5
| 4
|-
|-
|3||4||4||16||16||16
| 3
| 4
| 4
| 16
| 16
| 16
|-
|-
|4||6||4||36||24||16
| 4
| 6
| 4
| 36
| 24
| 16
|-
|-
|5||8||5||64||40||25
| 5
| 8
| 5
| 64
| 40
| 25
|-
|-
|6||9||7||81||63||49
| 6
| 9
| 7
| 81
| 63
| 49
|-
|-
|7||11||8||121||88||64
| 7
| 11
| 8
| 121
| 88
| 64
|-
|-
|8||15||10||225||150||100
| 8
| 15
| 10
| 225
| 150
| 100
|-
|-
|<math>\Sigma</math>||56.5||41.5||550.25||387.5||276.25
| <math>\Sigma</math>
| 56.5
| 41.5
| 550.25
| 387.5
| 276.25
|}
|}


Using the results in Table A.1, Eqns. (3) and (4) yield:
Using the results in Table A.1, Eqns. (3) and (4) yield:  


::<math>\widehat{b}=\frac{387.5-(56.5)(41.5)/8}{550.25-(56.5)^2/8}</math>
::<math>\widehat{b}=\frac{387.5-(56.5)(41.5)/8}{550.25-(56.5)^2/8}</math>  
::<math>\widehat{b}=0.6243</math>
::<math>\widehat{b}=0.6243</math>


:and:
:and:


::<math>\widehat{a}=\frac{41.5}{8}-0.6243\frac{56.5}{8}</math>
::<math>\widehat{a}=\frac{41.5}{8}-0.6243\frac{56.5}{8}</math>  
::<math>\widehat{a}=0.77836</math>
::<math>\widehat{a}=0.77836</math>


The least squares line is given by:
The least squares line is given by:  


::<math>y=0.77836+0.6243x</math>
::<math>y=0.77836+0.6243x</math>


The plotted line is shown in the next figure.
The plotted line is shown in the next figure.  


[[Image:ldaappendixA.1.gif|thumb|center|400px|]]
[[Image:LdaappendixA.1.gif|thumb|center|400px]]  


For rank regression on X using the analyzed data in Table A.1, Eqns. (8) and (7) yield:
For rank regression on X using the analyzed data in Table A.1, Eqns. (8) and (7) yield:  


::<math>\widehat{b}=\frac{387.5-(56.5)(41.5)/8}{276.25-(41.5)^2/8}</math>
::<math>\widehat{b}=\frac{387.5-(56.5)(41.5)/8}{276.25-(41.5)^2/8}</math>  
::<math>\widehat{a}=-0.97002</math>
::<math>\widehat{a}=-0.97002</math>


:and:
:and:


::<math>\widehat{a}=\frac{56.5}{8}-1.5484\frac{41.5}{8}</math>
::<math>\widehat{a}=\frac{56.5}{8}-1.5484\frac{41.5}{8}</math>  
::\widehat{a}=-0.97002
::\widehat{a}=-0.97002


The least squares line is given by:
The least squares line is given by:  


::<math>y=-\frac{(-0.97002)}{1.5484}+\frac{1}{1.5484}\cdot x</math>
::<math>y=-\frac{(-0.97002)}{1.5484}+\frac{1}{1.5484}\cdot x</math>  
::<math>y=0.62645+0.64581\cdot x</math>
::<math>y=0.62645+0.64581\cdot x</math>


The plotted line is shown in the next figure.
The plotted line is shown in the next figure.  


[[Image:ldaappendixA.2.gif|thumb|center|400px|]]
[[Image:LdaappendixA.2.gif|thumb|center|400px]]  


Note that the regression on Y is not necessarily the same as the regression on X. The only time when the two regressions are the same (i.e. will yield the same equation for a line) is when the data lie perfectly on a line.
Note that the regression on Y is not necessarily the same as the regression on X. The only time when the two regressions are the same (i.e. will yield the same equation for a line) is when the data lie perfectly on a line.  


The correlation coefficient is given by:
The correlation coefficient is given by:  


::<math>\hat{\rho}=\frac{\displaystyle\sum_{i=1}^N x_iy_i-\frac{\displaystyle\sum_{i=1}^N x_i\displaystyle\sum_{i=1}^N y_i}{N}}{\sqrt{\left(\displaystyle\sum_{i=1}^N x_i^2-\frac{(\displaystyle\sum_{i=1}^N x_i)^2}{N}\right)\left(\displaystyle\sum_{i=1}^N y_i^2-\frac{(\displaystyle\sum_{i=1}^N y_i)^2}{N}\right)}}</math>
::<math>\hat{\rho}=\frac{\displaystyle\sum_{i=1}^N x_iy_i-\frac{\displaystyle\sum_{i=1}^N x_i\displaystyle\sum_{i=1}^N y_i}{N}}{\sqrt{\left(\displaystyle\sum_{i=1}^N x_i^2-\frac{(\displaystyle\sum_{i=1}^N x_i)^2}{N}\right)\left(\displaystyle\sum_{i=1}^N y_i^2-\frac{(\displaystyle\sum_{i=1}^N y_i)^2}{N}\right)}}</math>

Revision as of 13:30, 29 October 2011

New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images, more targeted search and the latest content available as a PDF. As of September 2023, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest reference at help.reliasoft.com/reference/life_data_analysis

Chapter 4A: Least Squares/Rank Regression Equations


Weibullbox.png

Chapter 4A  
Least Squares/Rank Regression Equations  

Synthesis-icon.png

Available Software:
Weibull++

Examples icon.png

More Resources:
Weibull++ Examples Collection


Least Squares/Rank Regression Equations

Rank Regression on Y

Assume that a set of data pairs (x1, y1), (x2, y2), ... , (xN, yN), were obtained and plotted. Then, according to the least squares principle, which minimizes the vertical distance between the data points and the straight line fitted to the data, the best fitting straight line to these data is the straight line y = + x such that:

[math]\displaystyle{ \sum_{i=1}^N (\hat{a}+\hat{b} x_i - y_i)^2=min(a,b)\sum_{i=1}^N (a+b x_i-y_i)^2 }[/math]

and where and are the least squares estimates of a and b, and N is the number of data points.

To obtain [math]\displaystyle{ \hat{a} }[/math] and [math]\displaystyle{ \hat{b} }[/math], let:

[math]\displaystyle{ F=\sum_{i=1}^N (a+bx_i-y_i)^2 }[/math]

Differentiating F with respect to a and b yields:

[math]\displaystyle{ \frac{\partial F}{\partial a}=2\sum_{i=1}^N (a+b x_i-y_i) }[/math] (1)
and:
[math]\displaystyle{ \frac{\partial F}{\partial b}=2\sum_{i=1}^N (a+b x_i-y_i)x_i }[/math] (2)

Setting Eqns. (1) and (2) equal to zero yields:

[math]\displaystyle{ \sum_{i=1}^N (a+b x_i-y_i)x_i=\sum_{i=1}^N(\hat{y}_i-y_i)=-\sum_{i=1}^N(y_i-\hat{y}_i)=0 }[/math]
and:
[math]\displaystyle{ \sum_{i=1}^N (a+b x_i-y_i)x_i=\sum_{i=1}^N(\hat{y}_i-y_i)x_i=-\sum_{i=1}^N(y_i-\hat{y}_i)x_i =0 }[/math]

Solving the equations simultaneously yields:

[math]\displaystyle{ \hat{a}=\frac{\displaystyle \sum_{i=1}^N y_i}{N}-\hat{b}\frac{\displaystyle \sum_{i=1}{N} x_i}{N}=\bar{y}-\hat{b}\bar{x} }[/math] (3)
and:
[math]\displaystyle{ \hat{b}=\frac{\displaystyle \sum{i=1}^N x_i y_i-\frac{\displaystyle \sum_{i=1}^N x_i \sum_{i=1}^N y_i}{N}}{\displaystyle \sum_{i=1}^N x_i^2-\frac{\left(\displaystyle\sum_{i=1}^N x_i\right)^2}{N}} }[/math](4)

Rank Regression on X

Assume that a set of data pairs (x1, y1), (x2, y2), ... , (xN, yN) were obtained and plotted. Then, according to the least squares principle, which minimizes the horizontal distance between the data points and the straight line fitted to the data, the best fitting straight line to these data is the straight line x = + y such that:

[math]\displaystyle{ \displaystyle\sum_{i=1}^N(\hat{a}+\hat{b}y_i-x_i)^2=min(a,b)\displaystyle\sum_{i=1}^N (a+by_i-x_i)^2 }[/math]

Again, [math]\displaystyle{ \hat{a} }[/math] and [math]\displaystyle{ \hat{b} }[/math] are the least squares estimates of a and b, and N is the number of data points.

To obtain [math]\displaystyle{ \hat{a} }[/math] and [math]\displaystyle{ \hat{b} }[/math], let:

[math]\displaystyle{ F=\displaystyle\sum_{i=1}^N(a+by_i-x_i)^2 }[/math]

Differentiating F with respect to a and b yields:

[math]\displaystyle{ \frac{\partial F}{\partial a}=2\displaystyle\sum_{i=1}^N(a+by_i-x_i }[/math] (5)
and:
[math]\displaystyle{ \frac{\partial F}{\partial b}=2\displaystyle\sum_{i=1}^N(a+by_i-x_i)y_i }[/math](6)

Setting Eqns. (5) and (6) equal to zero yields:

[math]\displaystyle{ \displaystyle\sum_{i=1}^N(a+by_i-x_i)=\displaystyle\sum_{i=1}^N(\widehat{x}_i-x_i)=-\displaystyle\sum_{i=1}^N(x_i-\widehat{x}_i)=0 }[/math]
and:
[math]\displaystyle{ \displaystyle\sum_{i=1}^N(a+by_i-x_i)y_i=\displaystyle\sum_{i=1}^N(\widehat{x}_i-x_i)y_i=-\displaystyle\sum_{i=1}^N(x_i-\widehat{x}_i)y_i=0 }[/math]

Solving the above equations simultaneously yields:

[math]\displaystyle{ \widehat{a}=\frac{\displaystyle\sum_{i=1}^N x_i}{N}-\widehat{b}\frac{\displaystyle\sum_{i=1}^N y_i}{N}=\bar{x}-\widehat{b}\bar{y} }[/math](7)
and:
[math]\displaystyle{ \widehat{b}=\frac{\displaystyle\sum_{i=1}^N x_iy_i-\frac{\displaystyle\sum_{i=1}^N x_i\displaystyle\sum_{i=1}^N y_i}{N}}{\displaystyle\sum_{i=1}^N y_i^2-\frac{\left(\displaystyle\sum_{i=1}^N y_i\right)^2}{N}} }[/math](8)

Solving the equation of the line for y yields:

[math]\displaystyle{ y=-\frac{\hat{a}}{\hat{b}}+\frac{1}{\hat{b}} x }[/math]

Illustrating with an Example

Fit a least squares straight line using regression on X and regression on Y to the following data:

x 1 2.5 4 6 8 9 11 15
y 1.5 2 4 4 5 7 8 10

The first step is to generate the following table:

Table A.1 - Data analysis for the least squares method
[math]\displaystyle{ i }[/math] [math]\displaystyle{ x_i }[/math] [math]\displaystyle{ y_i }[/math] [math]\displaystyle{ x_i^2 }[/math] [math]\displaystyle{ x_iy_i }[/math] [math]\displaystyle{ y_i^2 }[/math]
1 1 1.5 1 1.5 2.25
2 2.5 2 6.25 5 4
3 4 4 16 16 16
4 6 4 36 24 16
5 8 5 64 40 25
6 9 7 81 63 49
7 11 8 121 88 64
8 15 10 225 150 100
[math]\displaystyle{ \Sigma }[/math] 56.5 41.5 550.25 387.5 276.25

Using the results in Table A.1, Eqns. (3) and (4) yield:

[math]\displaystyle{ \widehat{b}=\frac{387.5-(56.5)(41.5)/8}{550.25-(56.5)^2/8} }[/math]
[math]\displaystyle{ \widehat{b}=0.6243 }[/math]
and:
[math]\displaystyle{ \widehat{a}=\frac{41.5}{8}-0.6243\frac{56.5}{8} }[/math]
[math]\displaystyle{ \widehat{a}=0.77836 }[/math]

The least squares line is given by:

[math]\displaystyle{ y=0.77836+0.6243x }[/math]

The plotted line is shown in the next figure.

LdaappendixA.1.gif

For rank regression on X using the analyzed data in Table A.1, Eqns. (8) and (7) yield:

[math]\displaystyle{ \widehat{b}=\frac{387.5-(56.5)(41.5)/8}{276.25-(41.5)^2/8} }[/math]
[math]\displaystyle{ \widehat{a}=-0.97002 }[/math]
and:
[math]\displaystyle{ \widehat{a}=\frac{56.5}{8}-1.5484\frac{41.5}{8} }[/math]
\widehat{a}=-0.97002

The least squares line is given by:

[math]\displaystyle{ y=-\frac{(-0.97002)}{1.5484}+\frac{1}{1.5484}\cdot x }[/math]
[math]\displaystyle{ y=0.62645+0.64581\cdot x }[/math]

The plotted line is shown in the next figure.

LdaappendixA.2.gif

Note that the regression on Y is not necessarily the same as the regression on X. The only time when the two regressions are the same (i.e. will yield the same equation for a line) is when the data lie perfectly on a line.

The correlation coefficient is given by:

[math]\displaystyle{ \hat{\rho}=\frac{\displaystyle\sum_{i=1}^N x_iy_i-\frac{\displaystyle\sum_{i=1}^N x_i\displaystyle\sum_{i=1}^N y_i}{N}}{\sqrt{\left(\displaystyle\sum_{i=1}^N x_i^2-\frac{(\displaystyle\sum_{i=1}^N x_i)^2}{N}\right)\left(\displaystyle\sum_{i=1}^N y_i^2-\frac{(\displaystyle\sum_{i=1}^N y_i)^2}{N}\right)}} }[/math]
[math]\displaystyle{ \widehat{\rho}=\frac{387.5-(56.5)(41.5)/8}{[(550.25-(56.5)^2/8)(276.25-(41.5)^2/8)]^{\frac{1}{2}}} }[/math]
[math]\displaystyle{ \widehat{\rho}=0.98321 }[/math]