Appendix C: Benchmark Examples: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
Line 15: Line 15:
   \widehat{C}=9.69517\cdot {{10}^{-7}}  \\
   \widehat{C}=9.69517\cdot {{10}^{-7}}  \\
\end{matrix}</math>
\end{matrix}</math>
<br>
<br>
<br>



Revision as of 16:42, 17 August 2011

New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images, more targeted search and the latest content available as a PDF. As of September 2023, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest reference at help.reliasoft.com/reference/accelerated_life_testing_data_analysis

Chapter C: Appendix C: Benchmark Examples


ALTAbox.png

Chapter C  
Appendix C: Benchmark Examples  

Synthesis-icon.png

Available Software:
ALTA

Examples icon.png

More Resources:
ALTA Examples

Reference Appendix C: Benchmark Examples


In this section, five published examples are presented for comparison purposes. ReliaSoft's R&D validated the ALTA software with hundreds of data sets and methods. ALTA also cross-validates each provided solution by independently re-evaluating the second partial derivatives based on the estimated parameters each time a calculation is performed. These partials will be equal to zero when a solution is reached. Double precision is used throughout ALTA.

Example 1


From Wayne Nelson [28, p. 135].

Published Results for Example 1

• Published Results:

[math]\displaystyle{ \begin{matrix} {{\widehat{\sigma }}_{{{T}'}}}=0.59673 \\ \widehat{B}=9920.195 \\ \widehat{C}=9.69517\cdot {{10}^{-7}} \\ \end{matrix} }[/math]


Computed Results for Example 1


This same data set can be entered into ALTA by selecting the data sheet for grouped times-to-failure data with suspensions and using the Arrhenius model, the lognormal distribution, and MLE. • ALTA computed parameters for maximum likelihood are:


[math]\displaystyle{ \begin{matrix} {{\widehat{\sigma }}_{{{T}'}}}=0.59678 \\ \widehat{B}=9924.804 \\ \widehat{C}=9.58978\cdot {{10}^{-7}} \\ \end{matrix} }[/math]


Example 2


From Wayne Nelson [28, p. 453], time to breakdown of a transformer oil, tested at 26kV, 28kV, 30kV, 32kV, 34kV, 36kV and 38kV.

Published Results for Example 2


• Published Results:


[math]\displaystyle{ \begin{matrix} \widehat{\beta }=0.777 \\ \widehat{K}=6.8742\cdot {{10}^{-29}} \\ \widehat{n}=17.72958 \\ \end{matrix} }[/math]

• Published 95% confidence limits on [math]\displaystyle{ \beta }[/math] :



[math]\displaystyle{ \begin{matrix} \left\{ 0.653,0.923 \right\} \\ \end{matrix} }[/math]


Computed Results for Example 2


Use the inverse power law model and Weibull as the underlying life distribution.


• ALTA computed parameters are:



[math]\displaystyle{ \begin{matrix} \widehat{\beta }=0.7765, \\ \widehat{K}=6.8741\cdot {{10}^{-29}} \\ \widehat{n}=17.7296 \\ \end{matrix} }[/math]

• ALTA computed 95% confidence limits on the parameters:

[math]\displaystyle{ \left\{ 0.6535,0.9228 \right\}\text{ for }\widehat{\beta } }[/math]



Example 3


From Wayne Nelson [28, p. 157], forty bearings were tested to failure at four different test loads. The data were analyzed using the inverse power law Weibull model.

Published Results for Example 3


Nelson's [28, p. 306] IPL-Weibull parameter estimates:

[math]\displaystyle{ \begin{matrix} \widehat{\beta }=1.243396 \\ \widehat{K}=0.4350735 \\ \widehat{n}=13.8528 \\ \end{matrix} }[/math]


• The 95% 2-sided confidence bounds on the parameters: • • Percentile estimates at a stress of 0.87, with 95% 2-sided confidence bounds:

Percentile Life Estimate 95% Lower 95% Upper
1% 0.3913096 0.1251383 1.223632
10% 2.589731 1.230454 5.450596
90% 30.94404 19.41020 49.33149
99% 54.03563 33.02691 88.40821

Computed Results for Example 3


Use the inverse power law model and Weibull as the underlying life distribution. • ALTA computed parameters are:


[math]\displaystyle{ \begin{matrix} \widehat{\beta }=1.243375 \\ \widehat{K}=0.4350548 \\ \widehat{n}=13.8529 \\ \end{matrix} }[/math]


• The 95% 2-sided confidence bounds on the parameters:



• Percentile estimates at a stress of 0.87, with 95% 2-sided confidence bounds:

Percentile Life Estimate 95% Lower 95% Upper
1% 0.3913095 0.1251097 1.223911
10% 2.589814 1.230384 5.451588
90% 30.94632 19.40876 49.34240
99% 54.04012 33.02411 88.43039


Example 4


From Meeker and Escobar [26, p. 504], Mylar-Polyurethane Insulating Structure data using the inverse power law lognormal model.

Published Results for Example 4


• Published Results:


[math]\displaystyle{ \begin{matrix} {{\widehat{\sigma }}_{{{T}'}}}=1.05, \\ \widehat{K}=1.14\cdot {{10}^{-12}}, \\ \widehat{n}=4.28. \\ \end{matrix} }[/math]


• The 95% 2-sided confidence bounds on the parameters:


Computed Results for Example 4

Use the inverse power law lognormal. • ALTA computed parameters are:


[math]\displaystyle{ \begin{matrix} {{\widehat{\sigma }}_{{{T}'}}}=1.04979 \\ \widehat{K}=1.15\cdot {{10}^{-12}} \\ \widehat{n}=4.289 \\ \end{matrix} }[/math]

• ALTA computed 95% confidence limits on the parameters:



Example 5

From Meeker and Escobar [26, p. 515], Tantalum Capacitor data using the combination (Temperature-NonThermal) Weibull model.

Published Results for Example 5


• Published Results:


[math]\displaystyle{ \begin{matrix} \widehat{\beta }=0.4292 \\ \widehat{B}=3829.468 \\ \widehat{C}=4.513\cdot {{10}^{36}} \\ \widehat{n}=20.1 \\ \end{matrix} }[/math]

• The 95% 2-sided confidence bounds on the parameters:



Computed Results for Example 5


Use the Temperature-NonThermal model and Weibull as the underlying life distribution.
• ALTA computed parameters are:


[math]\displaystyle{ \begin{matrix} \widehat{\beta }=0.4287 \\ \widehat{B}=3780.298 \\ \widehat{C}=4.772\cdot {{10}^{36}} \\ \widehat{n}=20.09 \\ \end{matrix} }[/math]

• ALTA computed 95% confidence limits on the parameters: