The Weibull Distribution: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Replaced content with "{{template:LDABOOK|8|The Weibull Distribution}} The Weibull distribution is one of the most widely used lifetime distributions in reliability engineering. It is a versatile distribution that can take on the characteristics of other types of distributions, based on the value of the shape parameter, <math> {\beta} \,\!</math>. This chapter provides a brief background on the Weibull distribution, presents and derives most of the applicable equations and presents example...")
Tags: Replaced Reverted
No edit summary
Tag: Reverted
Line 1: Line 1:
{{template:LDABOOK|8|The Weibull Distribution}}
{{template:LDABOOK|8|The Weibull Distribution}}
The Weibull distribution is one of the most widely used lifetime distributions in reliability engineering. It is a versatile distribution that can take on the characteristics of other types of distributions, based on the value of the shape parameter, <math> {\beta} \,\!</math>. This chapter provides a brief background on the Weibull distribution, presents and derives most of the applicable equations and presents examples calculated both manually and by using ReliaSoft's [https://koi-3QN72QORVC.marketingautomation.services/net/m?md=Rw01CJDOxn%2FabhkPlZsy6DwBQ%2BaCXsGR Weibull++ software].
The Weibull distribution is one of the most widely used lifetime distributions in reliability engineering. It is a versatile distribution that can take on the characteristics of other types of distributions, based on the value of the shape parameter, <math> {\beta} \,\!</math>. This chapter provides a brief background on the Weibull distribution, presents and derives most of the applicable equations and presents examples calculated both manually and by using ReliaSoft's [https://koi-3QN72QORVC.marketingautomation.services/net/m?md=Rw01CJDOxn%2FabhkPlZsy6DwBQ%2BaCXsGR Weibull++ software].
== Weibull Probability Density Function ==
===The 3-Parameter Weibull===
{{three-parameter weibull distribution}}
===The 2-Parameter Weibull ===
The 2-parameter Weibull ''pdf'' is obtained by setting
<math> \gamma=0 \,\!</math>, and is given by:
:<math> f(t)={ \frac{\beta }{\eta }}\left( {\frac{t}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{t}{\eta }}\right) ^{\beta }} \,\!</math>
=== The 1-Parameter Weibull===
The 1-parameter Weibull ''pdf'' is obtained by again setting
<math>\gamma=0 \,\!</math> and assuming <math>\beta=C=Constant \,\!</math> assumed value or:
::<math> f(t)={ \frac{C}{\eta }}\left( {\frac{t}{\eta }}\right) ^{C-1}e^{-\left( {\frac{t}{ \eta }}\right) ^{C}} \,\!</math>
where the only unknown parameter is the scale parameter, <math>\eta\,\!</math>.
Note that in the formulation of the 1-parameter Weibull, we assume that the shape parameter <math>\beta \,\!</math> is known ''a priori'' from past experience with identical or similar products. The advantage of doing this is that data sets with few or no failures can be analyzed.

Revision as of 23:49, 7 March 2023

New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images, more targeted search and the latest content available as a PDF. As of September 2023, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest reference at help.reliasoft.com/reference/life_data_analysis

Chapter 8: The Weibull Distribution


Weibullbox.png

Chapter 8  
The Weibull Distribution  

Synthesis-icon.png

Available Software:
Weibull++

Examples icon.png

More Resources:
Weibull++ Examples Collection

The Weibull distribution is one of the most widely used lifetime distributions in reliability engineering. It is a versatile distribution that can take on the characteristics of other types of distributions, based on the value of the shape parameter, [math]\displaystyle{ {\beta} \,\! }[/math]. This chapter provides a brief background on the Weibull distribution, presents and derives most of the applicable equations and presents examples calculated both manually and by using ReliaSoft's Weibull++ software.

Weibull Probability Density Function

The 3-Parameter Weibull

The 3-parameter Weibull pdf is given by:

[math]\displaystyle{ f(t)={ \frac{\beta }{\eta }}\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta -1}e^{-\left( {\frac{t-\gamma }{\eta }}\right) ^{\beta }} \,\! }[/math]

where:

[math]\displaystyle{ f(t)\geq 0,\text{ }t\geq \gamma \,\! }[/math]
[math]\displaystyle{ \beta\gt 0\ \,\! }[/math]
[math]\displaystyle{ \eta \gt 0 \,\! }[/math]
[math]\displaystyle{ -\infty \lt \gamma \lt +\infty \,\! }[/math]

and:

[math]\displaystyle{ \eta= \,\! }[/math] scale parameter, or characteristic life
[math]\displaystyle{ \beta= \,\! }[/math] shape parameter (or slope)
[math]\displaystyle{ \gamma= \,\! }[/math] location parameter (or failure free life)

The 2-Parameter Weibull

The 2-parameter Weibull pdf is obtained by setting [math]\displaystyle{ \gamma=0 \,\! }[/math], and is given by:

[math]\displaystyle{ f(t)={ \frac{\beta }{\eta }}\left( {\frac{t}{\eta }}\right) ^{\beta -1}e^{-\left( { \frac{t}{\eta }}\right) ^{\beta }} \,\! }[/math]

The 1-Parameter Weibull

The 1-parameter Weibull pdf is obtained by again setting [math]\displaystyle{ \gamma=0 \,\! }[/math] and assuming [math]\displaystyle{ \beta=C=Constant \,\! }[/math] assumed value or:

[math]\displaystyle{ f(t)={ \frac{C}{\eta }}\left( {\frac{t}{\eta }}\right) ^{C-1}e^{-\left( {\frac{t}{ \eta }}\right) ^{C}} \,\! }[/math]

where the only unknown parameter is the scale parameter, [math]\displaystyle{ \eta\,\! }[/math].

Note that in the formulation of the 1-parameter Weibull, we assume that the shape parameter [math]\displaystyle{ \beta \,\! }[/math] is known a priori from past experience with identical or similar products. The advantage of doing this is that data sets with few or no failures can be analyzed.