Arrhenius-Exponential Model: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
(Created page with '{{Reference Example|ALTA_Reference_Examples_Banner.png|ALTA_Reference_Examples}} Validate the calculation of Arrhenius-Exponential model. {{Reference_Example_Heading1}} Data i…')
 
No edit summary
Line 27: Line 27:
|-
|-
|}
|}




{{Reference_Example_Heading3}}
{{Reference_Example_Heading3}}
 
For this data set, the Arrhenius life stress relationship with an Exponential distribution is used.  The estimated activation energy value is <math>\,\!E_{a}=0.323</math>. The acceleration factor from 70 °C to 35 °C is 3.5.


{{Reference_Example_Heading4|ALTA}}
{{Reference_Example_Heading4|ALTA}}

Revision as of 23:01, 9 June 2014

ALTA_Reference_Examples_Banner.png

ALTA_Reference_Examples

Validate the calculation of Arrhenius-Exponential model.

Reference Case

Data is from Example 7.1 on page 254 in book Life Cycle Reliability Engineering by Dr. Guangbin Yang, John Wiley & Sons, 2007.


Data

Failure Time Temperature (°C)
2385 85
2537 85
1655 100
1738 100
1025 115
1163 115


Result For this data set, the Arrhenius life stress relationship with an Exponential distribution is used. The estimated activation energy value is [math]\displaystyle{ \,\!E_{a}=0.323 }[/math]. The acceleration factor from 70 °C to 35 °C is 3.5.

Results in ALTA