1P-Weibull with Zero Failure Data: Difference between revisions

From ReliaWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 1: Line 1:
{{Reference Example}}
{{Reference Example}}


This example compares the calculation for a 1-parameter Weibull with zero failure data.
This example validates the calculations for a 1-parameter Weibull with zero failure data in Weibull++ standard folios.
   
   



Latest revision as of 16:14, 28 September 2015

Weibull Reference Examples Banner.png


New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images and more targeted search.

As of January 2024, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest references at Weibull examples and Weibull reference examples.




1P-Weibull with Zero Failure Data

This example validates the calculations for a 1-parameter Weibull with zero failure data in Weibull++ standard folios.


Reference Case

The data set from Table 8.2 on page 196 of the book Statistical Methods for Reliability Data by Dr. Meeker and Dr. Escobar, John Wiley & Sons, 1998 is used.


Data

Number in State State F or S Time to Failure
10 S 500
12 S 1000
8 S 1500
9 S 2000
7 S 2500
9 S 3000
6 S 3500
3 S 4000


Result

The formulas for calculating the [math]\displaystyle{ \eta \,\! }[/math] at a given confidence level of [math]\displaystyle{ 1 - \alpha\,\! }[/math] is on page 195.

[math]\displaystyle{ \hat{\eta}_{L} = \left (\frac{2\sum_{i=1}^{n} t^{\beta}_{i}}{X^{2}_{(1-\alpha ;2)}}\right ) ^{\beta} }[/math]


The 95% lower confidence bound on [math]\displaystyle{ \eta \,\! }[/math] when [math]\displaystyle{ \beta = 2\,\! }[/math] is:

[math]\displaystyle{ \hat{\eta}_{L} = \left (\frac{2\sum_{i=1}^{n} t^{\beta}_{i}}{X^{2}_{(1-\alpha ;2)}} \right )^{\beta} = 10250\,\! }[/math]


Results in Weibull++

The following picture shows the result in Weibull++:

1PW no failures.png