Appendix A: Generating Random Numbers from a Distribution: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
Simulation involves generating random numbers that belong to a specific distribution. We will illustrate this methodology using the Weibull distribution. | Simulation involves generating random numbers that belong to a specific distribution. We will illustrate this methodology using the Weibull distribution. | ||
=Generating Random Times from a Weibull Distribution= | |||
The <math>cdf</math> of the 2-parameter Weibull distribution is given by, | |||
<br> | |||
::<math>F(T)=1-{{e}^{-{{\left( \tfrac{T}{\eta } \right)}^{\beta }}}}.</math> | |||
<br> | |||
The Weibull reliability function is given by, | |||
<br> | |||
::<math>\begin{align} | |||
R(T)= & 1-F(t) \\ | |||
= & {{e}^{-{{\left( \tfrac{T}{\eta } \right)}^{\beta }}}}. | |||
\end{align}</math> | |||
<br> | |||
To generate a random time from a Weibull distribution, with a given <math>\eta </math> and <math>\beta </math> a uniform random number from 0 to 1, <math>{{U}_{R}}[0,1]</math> , is first obtained. The random time from a weibull distribution is then obtained from: | |||
<br> | |||
::<math>{{T}_{R}}=\eta \cdot {{\left\{ -\ln \left[ {{U}_{R}}[0,1] \right] \right\}}^{\tfrac{1}{\beta }}}.</math> | |||
<br> | |||
==Conditional== | |||
=BlockSim's Random Number Generator (RNG)= | |||
= Sections = | = Sections = | ||
#[[Generating Random Times from a Weibull Distribution]] | #[[Generating Random Times from a Weibull Distribution]] | ||
#[[Conditional]] | #[[Conditional]] | ||
#[[Regarding BlockSim's Random Number Generator (RNG)]] | #[[Regarding BlockSim's Random Number Generator (RNG)]] |
Revision as of 13:38, 10 July 2011
Simulation involves generating random numbers that belong to a specific distribution. We will illustrate this methodology using the Weibull distribution.
Generating Random Times from a Weibull Distribution
The [math]\displaystyle{ cdf }[/math] of the 2-parameter Weibull distribution is given by,
- [math]\displaystyle{ F(T)=1-{{e}^{-{{\left( \tfrac{T}{\eta } \right)}^{\beta }}}}. }[/math]
The Weibull reliability function is given by,
- [math]\displaystyle{ \begin{align} R(T)= & 1-F(t) \\ = & {{e}^{-{{\left( \tfrac{T}{\eta } \right)}^{\beta }}}}. \end{align} }[/math]
To generate a random time from a Weibull distribution, with a given [math]\displaystyle{ \eta }[/math] and [math]\displaystyle{ \beta }[/math] a uniform random number from 0 to 1, [math]\displaystyle{ {{U}_{R}}[0,1] }[/math] , is first obtained. The random time from a weibull distribution is then obtained from:
- [math]\displaystyle{ {{T}_{R}}=\eta \cdot {{\left\{ -\ln \left[ {{U}_{R}}[0,1] \right] \right\}}^{\tfrac{1}{\beta }}}. }[/math]