Confidence Bounds for Repairable Systems Analysis: Difference between revisions
mNo edit summary |
|||
Line 7: | Line 7: | ||
The parameter <math>\beta \,\!</math> must be positive, thus <math>\ln \beta \,\!</math> is approximately treated as being normally distributed. | The parameter <math>\beta \,\!</math> must be positive, thus <math>\ln \beta \,\!</math> is approximately treated as being normally distributed. | ||
:<math>\frac{\ln (\hat{\beta })-\ln (\beta )}{\sqrt{Var\left[ \ln (\hat{\beta }) \right]}}\ \tilde{\ }\ N(0,1)\,\!</math> | |||
:<math>C{{B}_{\beta }}=\hat{\beta }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\beta })}/\hat{\beta }}}\,\!</math> | |||
:<math>\hat{\beta }=\frac{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,{{N}_{q}}}{\hat{\lambda }\underset{q=1}{\overset{K}{\mathop{\sum }}}\,\left[ (T_{q}^{\hat{\beta }}\ln ({{T}_{q}})-S_{q}^{\hat{\beta }}\ln ({{S}_{q}}) \right]-\underset{q=1}{\overset{K}{\mathop{\sum }}}\,\underset{i=1}{\overset{{{N}_{q}}}{\mathop{\sum }}}\,\ln ({{X}_{i}}{{}_{q}})}\,\!</math> | |||
All variance can be calculated using the Fisher Information Matrix. | All variance can be calculated using the Fisher Information Matrix. | ||
Line 17: | Line 17: | ||
<math>\Lambda \,\!</math> is the natural log-likelihood function. | <math>\Lambda \,\!</math> is the natural log-likelihood function. | ||
:<math>\Lambda =\underset{q=1}{\overset{K}{\mathop \sum }}\,\left[ {{N}_{q}}(\ln (\lambda )+\ln (\beta ))-\lambda (T_{q}^{\beta }-S_{q}^{\beta })+(\beta -1)\underset{i=1}{\overset{{{N}_{q}}}{\mathop \sum }}\,\ln ({{x}_{iq}}) \right]\,\!</math> | |||
:<math>\frac{{{\partial }^{2}}\Lambda }{\partial {{\lambda }^{2}}}=-\frac{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,{{N}_{q}}}{{{\lambda }^{2}}}\,\!</math> | |||
:<math>\frac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta }=-\underset{q=1}{\overset{K}{\mathop \sum }}\,\left[ T_{q}^{\beta }\ln ({{T}_{q}})-S_{q}^{\beta }\ln ({{S}_{q}}) \right]\,\!</math> | |||
:<math>\frac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}}=-\frac{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,{{N}_{q}}}{{{\beta }^{2}}}-\lambda \underset{q=1}{\overset{K}{\mathop \sum }}\,\left[ T_{q}^{\beta }{{(\ln ({{T}_{q}}))}^{2}}-S_{q}^{\beta }{{(\ln ({{S}_{q}}))}^{2}} \right]\,\!</math> | |||
====Crow Bounds==== | ====Crow Bounds==== | ||
Calculate the conditional maximum likelihood estimate of <math>\tilde{\beta \,\!}\,\!</math> : | Calculate the conditional maximum likelihood estimate of <math>\tilde{\beta \,\!}\,\!</math> : | ||
:<math>\tilde{\beta }=\frac{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,{{M}_{q}}}{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,\underset{i=1}{\overset{M}{\mathop{\sum }}}\,\ln \left( \tfrac{{{T}_{q}}}{{{X}_{iq}}} \right)}\,\!</math> | |||
The Crow 2-sided <math>(1-a)\,\!</math> 100% confidence bounds on <math>\beta \,\!</math> are: | The Crow 2-sided <math>(1-a)\,\!</math> 100% confidence bounds on <math>\beta \,\!</math> are: | ||
:<math>\begin{align} | |||
{{\beta }_{L}}= & \tilde{\beta }\frac{\chi _{\tfrac{\alpha }{2},2M}^{2}}{2M} \\ | {{\beta }_{L}}= & \tilde{\beta }\frac{\chi _{\tfrac{\alpha }{2},2M}^{2}}{2M} \\ | ||
{{\beta }_{U}}= & \tilde{\beta }\frac{\chi _{1-\tfrac{\alpha }{2},2M}^{2}}{2M} | {{\beta }_{U}}= & \tilde{\beta }\frac{\chi _{1-\tfrac{\alpha }{2},2M}^{2}}{2M} | ||
Line 41: | Line 41: | ||
The parameter <math>\lambda \,\!</math> must be positive, thus <math>\ln \lambda \,\!</math> is approximately treated as being normally distributed. These bounds are based on: | The parameter <math>\lambda \,\!</math> must be positive, thus <math>\ln \lambda \,\!</math> is approximately treated as being normally distributed. These bounds are based on: | ||
:<math>\frac{\ln (\hat{\lambda })-\ln (\lambda )}{\sqrt{Var\left[ \ln (\hat{\lambda }) \right]}}\ \tilde{\ }\ N(0,1)\,\!</math> | |||
The approximate confidence bounds on <math>\lambda \,\!</math> are given as: | The approximate confidence bounds on <math>\lambda \,\!</math> are given as: | ||
:<math>C{{B}_{\lambda }}=\hat{\lambda }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\lambda })}/\hat{\lambda }}}\,\!</math> | |||
where <math>\hat{\lambda }=\tfrac{n}{T_{K}^{{\hat{\beta }}}}\,\!</math>. | where <math>\hat{\lambda }=\tfrac{n}{T_{K}^{{\hat{\beta }}}}\,\!</math>. | ||
Line 65: | Line 65: | ||
The confidence bounds on <math>\lambda \,\!</math> for failure terminated data are calculated using: | The confidence bounds on <math>\lambda \,\!</math> for failure terminated data are calculated using: | ||
:<math>\begin{align} | |||
{{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot \underset{q=1}{\overset{K}{\mathop{\sum }}}\,T_{q}^{^{\beta }}} \\ | {{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot \underset{q=1}{\overset{K}{\mathop{\sum }}}\,T_{q}^{^{\beta }}} \\ | ||
{{\lambda }_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N}^{2}}{2\cdot \underset{q=1}{\overset{K}{\mathop{\sum }}}\,T_{q}^{^{\beta }}} | {{\lambda }_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N}^{2}}{2\cdot \underset{q=1}{\overset{K}{\mathop{\sum }}}\,T_{q}^{^{\beta }}} | ||
Line 73: | Line 73: | ||
Since the growth rate is equal to <math>1-\beta \,\!</math>. the confidence bounds are: | Since the growth rate is equal to <math>1-\beta \,\!</math>. the confidence bounds are: | ||
:<math>\begin{align} | |||
Gr.\text{ }Rat{{e}_{L}}= & 1-{{\beta }_{U}} \\ | Gr.\text{ }Rat{{e}_{L}}= & 1-{{\beta }_{U}} \\ | ||
Gr.\text{ }Rat{{e}_{U}}= & 1-{{\beta }_{L}} | Gr.\text{ }Rat{{e}_{U}}= & 1-{{\beta }_{L}} | ||
Line 84: | Line 84: | ||
The cumulative MTBF, <math>{{m}_{c}}(t)\,\!</math>. must be positive, thus <math>\ln {{m}_{c}}(t)\,\!</math> is approximately treated as being normally distributed. | The cumulative MTBF, <math>{{m}_{c}}(t)\,\!</math>. must be positive, thus <math>\ln {{m}_{c}}(t)\,\!</math> is approximately treated as being normally distributed. | ||
:<math>\frac{\ln ({{\hat{m}}_{c}}(t))-\ln ({{m}_{c}}(t))}{\sqrt{Var\left[ \ln ({{\hat{m}}_{c}}(t)) \right]}}\ \tilde{\ }\ N(0,1)\,\!</math> | |||
The approximate confidence bounds on the cumulative MTBF are then estimated from: | The approximate confidence bounds on the cumulative MTBF are then estimated from: | ||
:<math>CB={{\hat{m}}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{\hat{m}}_{c}}(t))}/{{\hat{m}}_{c}}(t)}}\,\!</math> | |||
where: | |||
:<math>{{\hat{m}}_{c}}(t)=\frac{1}{\hat{\lambda }}{{t}^{1-\hat{\beta }}}\,\!</math> | |||
:<math>\begin{align} | |||
Var({{\hat{m}}_{c}}(t))= & {{\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ | Var({{\hat{m}}_{c}}(t))= & {{\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ | ||
& +2\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\, | & +2\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\, | ||
Line 101: | Line 101: | ||
The variance calculation is the same as the calculations given in the confidence bounds on [[Confidence_Bounds_for_Repairable_Systems_Analysis#Beta|Beta]]. | The variance calculation is the same as the calculations given in the confidence bounds on [[Confidence_Bounds_for_Repairable_Systems_Analysis#Beta|Beta]]. | ||
:<math>\begin{align} | |||
\frac{\partial {{m}_{c}}(t)}{\partial \beta }= & -\frac{1}{\hat{\lambda }}{{t}^{1-\hat{\beta }}}\ln (t) \\ | \frac{\partial {{m}_{c}}(t)}{\partial \beta }= & -\frac{1}{\hat{\lambda }}{{t}^{1-\hat{\beta }}}\ln (t) \\ | ||
\frac{\partial {{m}_{c}}(t)}{\partial \lambda }= & -\frac{1}{{{\hat{\lambda }}^{2}}}{{t}^{1-\hat{\beta }}} | \frac{\partial {{m}_{c}}(t)}{\partial \lambda }= & -\frac{1}{{{\hat{\lambda }}^{2}}}{{t}^{1-\hat{\beta }}} | ||
Line 109: | Line 109: | ||
To calculate the Crow confidence bounds on cumulative MTBF, first calculate the Crow cumulative failure intensity confidence bounds: | To calculate the Crow confidence bounds on cumulative MTBF, first calculate the Crow cumulative failure intensity confidence bounds: | ||
:<math>C{{(t)}_{L}}=\frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t}\,\!</math> | |||
:<math>C{{(t)}_{u}}=\frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot t}\,\!</math> | |||
Then | |||
:<math>\begin{align} | |||
{{[MTB{{F}_{c}}]}_{L}}= & \frac{1}{C{{(t)}_{U}}} \\ | {{[MTB{{F}_{c}}]}_{L}}= & \frac{1}{C{{(t)}_{U}}} \\ | ||
{{[MTB{{F}_{c}}]}_{U}}= & \frac{1}{C{{(t)}_{L}}} | {{[MTB{{F}_{c}}]}_{U}}= & \frac{1}{C{{(t)}_{L}}} | ||
Line 125: | Line 125: | ||
The instantaneous MTBF, <math>{{m}_{i}}(t)\,\!</math>. must be positive, thus <math>\ln {{m}_{i}}(t)\,\!</math> is approximately treated as being normally distributed. | The instantaneous MTBF, <math>{{m}_{i}}(t)\,\!</math>. must be positive, thus <math>\ln {{m}_{i}}(t)\,\!</math> is approximately treated as being normally distributed. | ||
:<math>\frac{\ln ({{\hat{m}}_{i}}(t))-\ln ({{m}_{i}}(t))}{\sqrt{Var\left[ \ln ({{\hat{m}}_{i}}(t)) \right]}}\ \tilde{\ }\ N(0,1)\,\!</math> | |||
The approximate confidence bounds on the instantaneous MTBF are then estimated from: | The approximate confidence bounds on the instantaneous MTBF are then estimated from: | ||
:<math>CB={{\hat{m}}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{\hat{m}}_{i}}(t))}/{{\hat{m}}_{i}}(t)}}\,\!</math> | |||
where: | |||
:<math>{{\hat{m}}_{i}}(t)=\frac{1}{\lambda \beta {{t}^{\beta -1}}}\,\!</math> | |||
:<math>\begin{align} | |||
Var({{\hat{m}}_{i}}(t))= & {{\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ | Var({{\hat{m}}_{i}}(t))= & {{\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ | ||
& +2\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) | & +2\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) | ||
Line 142: | Line 142: | ||
The variance calculation is the same as the calculations given in the confidence bounds on [[Confidence_Bounds_for_Repairable_Systems_Analysis#Beta|Beta]]. | The variance calculation is the same as the calculations given in the confidence bounds on [[Confidence_Bounds_for_Repairable_Systems_Analysis#Beta|Beta]]. | ||
:<math>\begin{align} | |||
\frac{\partial {{m}_{i}}(t)}{\partial \beta }= & -\frac{1}{\hat{\lambda }{{\hat{\beta }}^{2}}}{{t}^{1-\hat{\beta }}}-\frac{1}{\hat{\lambda }\hat{\beta }}{{t}^{1-\hat{\beta }}}\ln (t) \\ | \frac{\partial {{m}_{i}}(t)}{\partial \beta }= & -\frac{1}{\hat{\lambda }{{\hat{\beta }}^{2}}}{{t}^{1-\hat{\beta }}}-\frac{1}{\hat{\lambda }\hat{\beta }}{{t}^{1-\hat{\beta }}}\ln (t) \\ | ||
\frac{\partial {{m}_{i}}(t)}{\partial \lambda }= & -\frac{1}{{{\hat{\lambda }}^{2}}\hat{\beta }}{{t}^{1-\hat{\beta }}} | \frac{\partial {{m}_{i}}(t)}{\partial \lambda }= & -\frac{1}{{{\hat{\lambda }}^{2}}\hat{\beta }}{{t}^{1-\hat{\beta }}} | ||
Line 152: | Line 152: | ||
To calculate the bounds for failure terminated data, consider the following equation: | To calculate the bounds for failure terminated data, consider the following equation: | ||
:<math>G(\mu |n)=\mathop{}_{0}^{\infty }\frac{{{e}^{-x}}{{x}^{n-2}}}{(n-2)!}\underset{i=0}{\overset{n-1}{\mathop \sum }}\,\frac{1}{i!}{{\left( \frac{\mu }{x} \right)}^{i}}\exp (-\frac{\mu }{x})\,dx\,\!</math> | |||
Find the values <math>{{p}_{1}}\,\!</math> and <math>{{p}_{2}}\,\!</math> by finding the solution <math>c\,\!</math> to <math>G({{n}^{2}}/c|n)=\xi \,\!</math> for <math>\xi =\tfrac{\alpha }{2}\,\!</math> and <math>\xi =1-\tfrac{\alpha }{2}\,\!</math>. respectively. If using the biased parameters, <math>\hat{\beta }\,\!</math> and <math>\hat{\lambda }\,\!</math>. then the upper and lower confidence bounds are: | Find the values <math>{{p}_{1}}\,\!</math> and <math>{{p}_{2}}\,\!</math> by finding the solution <math>c\,\!</math> to <math>G({{n}^{2}}/c|n)=\xi \,\!</math> for <math>\xi =\tfrac{\alpha }{2}\,\!</math> and <math>\xi =1-\tfrac{\alpha }{2}\,\!</math>. respectively. If using the biased parameters, <math>\hat{\beta }\,\!</math> and <math>\hat{\lambda }\,\!</math>. then the upper and lower confidence bounds are: | ||
:<math>\begin{align} | |||
{{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot {{p}_{1}} \\ | {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot {{p}_{1}} \\ | ||
{{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot {{p}_{2}} | {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot {{p}_{2}} | ||
Line 163: | Line 163: | ||
where <math>MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\!</math>. If using the unbiased parameters, <math>\bar{\beta }\,\!</math> and <math>\bar{\lambda }\,\!</math>. then the upper and lower confidence bounds are: | where <math>MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\!</math>. If using the unbiased parameters, <math>\bar{\beta }\,\!</math> and <math>\bar{\lambda }\,\!</math>. then the upper and lower confidence bounds are: | ||
:<math>\begin{align} | |||
{{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot \left( \frac{N-2}{N} \right)\cdot {{p}_{1}} \\ | {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot \left( \frac{N-2}{N} \right)\cdot {{p}_{1}} \\ | ||
{{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot \left( \frac{N-2}{N} \right)\cdot {{p}_{2}} | {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot \left( \frac{N-2}{N} \right)\cdot {{p}_{2}} | ||
Line 174: | Line 174: | ||
To calculate the bounds for time terminated data, consider the following equation where <math>{{I}_{1}}(.)\,\!</math> is the modified Bessel function of order one: | To calculate the bounds for time terminated data, consider the following equation where <math>{{I}_{1}}(.)\,\!</math> is the modified Bessel function of order one: | ||
:<math>H(x|k)=\underset{j=1}{\overset{k}{\mathop \sum }}\,\frac{{{x}^{2j-1}}}{{{2}^{2j-1}}(j-1)!j!{{I}_{1}}(x)}\,\!</math> | |||
Find the values <math>{{\Pi }_{1}}\,\!</math> and <math>{{\Pi }_{2}}\,\!</math> by finding the solution <math>x\,\!</math> to <math>H(x|k)=\tfrac{\alpha }{2}\,\!</math> and <math>H(x|k)=1-\tfrac{\alpha }{2}\,\!</math> in the cases corresponding to the lower and upper bounds, respectively. | Find the values <math>{{\Pi }_{1}}\,\!</math> and <math>{{\Pi }_{2}}\,\!</math> by finding the solution <math>x\,\!</math> to <math>H(x|k)=\tfrac{\alpha }{2}\,\!</math> and <math>H(x|k)=1-\tfrac{\alpha }{2}\,\!</math> in the cases corresponding to the lower and upper bounds, respectively. | ||
Line 180: | Line 180: | ||
Calculate <math>\Pi =\tfrac{{{n}^{2}}}{4{{x}^{2}}}\,\!</math> for each case. If using the biased parameters, <math>\hat{\beta }\,\!</math> and <math>\hat{\lambda }\,\!</math>. then the upper and lower confidence bounds are: | Calculate <math>\Pi =\tfrac{{{n}^{2}}}{4{{x}^{2}}}\,\!</math> for each case. If using the biased parameters, <math>\hat{\beta }\,\!</math> and <math>\hat{\lambda }\,\!</math>. then the upper and lower confidence bounds are: | ||
:<math>\begin{align} | |||
{{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot {{\Pi }_{1}} \\ | {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot {{\Pi }_{1}} \\ | ||
{{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot {{\Pi }_{2}} | {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot {{\Pi }_{2}} | ||
Line 187: | Line 187: | ||
where <math>MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\!</math>. If using the unbiased parameters, <math>\bar{\beta }\,\!</math> and <math>\bar{\lambda }\,\!</math>. then the upper and lower confidence bounds are: | where <math>MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\!</math>. If using the unbiased parameters, <math>\bar{\beta }\,\!</math> and <math>\bar{\lambda }\,\!</math>. then the upper and lower confidence bounds are: | ||
:<math>\begin{align} | |||
{{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot \left( \frac{N-1}{N} \right)\cdot {{\Pi }_{1}} \\ | {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot \left( \frac{N-1}{N} \right)\cdot {{\Pi }_{1}} \\ | ||
{{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot \left( \frac{N-1}{N} \right)\cdot {{\Pi }_{2}} | {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot \left( \frac{N-1}{N} \right)\cdot {{\Pi }_{2}} | ||
Line 198: | Line 198: | ||
The cumulative failure intensity, <math>{{\lambda }_{c}}(t)\,\!</math> must be positive, thus <math>\ln {{\lambda }_{c}}(t)\,\!</math> is approximately treated as being normally distributed. | The cumulative failure intensity, <math>{{\lambda }_{c}}(t)\,\!</math> must be positive, thus <math>\ln {{\lambda }_{c}}(t)\,\!</math> is approximately treated as being normally distributed. | ||
:<math>\frac{\ln ({{\hat{\lambda }}_{c}}(t))-\ln ({{\lambda }_{c}}(t))}{\sqrt{Var\left[ \ln ({{\hat{\lambda }}_{c}}(t)) \right]}}\ \tilde{\ }\ N(0,1)\,\!</math> | |||
The approximate confidence bounds on the cumulative failure intensity are then estimated using: | The approximate confidence bounds on the cumulative failure intensity are then estimated using: | ||
:<math>CB={{\hat{\lambda }}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{\hat{\lambda }}_{c}}(t))}/{{\hat{\lambda }}_{c}}(t)}}\,\!</math> | |||
where: | |||
:<math>{{\hat{\lambda }}_{c}}(t)=\hat{\lambda }{{t}^{\hat{\beta }-1}}\,\!</math> | |||
and: | |||
:<math>\begin{align} | |||
Var({{\hat{\lambda }}_{c}}(t))= & {{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ | Var({{\hat{\lambda }}_{c}}(t))= & {{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ | ||
& +2\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) | & +2\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) | ||
Line 217: | Line 217: | ||
The variance calculation is the same as the calculations in the confidence bounds on [[Confidence_Bounds_for_Repairable_Systems_Analysis#Beta|Beta]]. | The variance calculation is the same as the calculations in the confidence bounds on [[Confidence_Bounds_for_Repairable_Systems_Analysis#Beta|Beta]]. | ||
:<math>\begin{align} | |||
\frac{\partial {{\lambda }_{c}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}\ln (t) \\ | \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}\ln (t) \\ | ||
\frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda }= & {{t}^{\hat{\beta }-1}} | \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda }= & {{t}^{\hat{\beta }-1}} | ||
Line 225: | Line 225: | ||
The Crow cumulative failure intensity confidence bounds are given by: | The Crow cumulative failure intensity confidence bounds are given by: | ||
:<math>C{{(t)}_{L}}=\frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t}\,\!</math> | |||
:<math>C{{(t)}_{u}}=\frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot t}\,\!</math> | |||
===Instantaneous Failure Intensity===<!-- THIS SECTION HEADER IS LINKED FROM ANOTHER SECTION IN THIS PAGE. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). --> | ===Instantaneous Failure Intensity===<!-- THIS SECTION HEADER IS LINKED FROM ANOTHER SECTION IN THIS PAGE. IF YOU RENAME THE SECTION, YOU MUST UPDATE THE LINK(S). --> | ||
Line 234: | Line 234: | ||
The instantaneous failure intensity, <math>{{\lambda }_{i}}(t)\,\!</math>. must be positive, thus <math>\ln {{\lambda }_{i}}(t)\,\!</math> is approximately treated as being normally distributed. | The instantaneous failure intensity, <math>{{\lambda }_{i}}(t)\,\!</math>. must be positive, thus <math>\ln {{\lambda }_{i}}(t)\,\!</math> is approximately treated as being normally distributed. | ||
:<math>\frac{\ln ({{\hat{\lambda }}_{i}}(t))-\ln ({{\lambda }_{i}}(t))}{\sqrt{Var\left[ \ln ({{\hat{\lambda }}_{i}}(t)) \right]}}\sim N(0,1)\,\!</math> | |||
The approximate confidence bounds on the instantaneous failure intensity are then estimated from: | The approximate confidence bounds on the instantaneous failure intensity are then estimated from: | ||
:<math>CB={{\hat{\lambda }}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{\hat{\lambda }}_{i}}(t))}/{{\hat{\lambda }}_{i}}(t)}}\,\!</math> | |||
where <math>{{\lambda }_{i}}(t)=\lambda \beta {{t}^{\beta -1}}\,\!</math> and: | where <math>{{\lambda }_{i}}(t)=\lambda \beta {{t}^{\beta -1}}\,\!</math> and: | ||
:<math>\begin{align} | |||
Var({{\hat{\lambda }}_{i}}(t))= & {{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ | Var({{\hat{\lambda }}_{i}}(t))= & {{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ | ||
& +2\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) | & +2\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) | ||
Line 249: | Line 249: | ||
The variance calculation is the same as the calculations in the confidence bounds on [[Confidence_Bounds_for_Repairable_Systems_Analysis#Beta|Beta]]. | The variance calculation is the same as the calculations in the confidence bounds on [[Confidence_Bounds_for_Repairable_Systems_Analysis#Beta|Beta]]. | ||
:<math>\begin{align} | |||
\frac{\partial {{\lambda }_{i}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}+\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}\ln (t) \\ | \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}+\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}\ln (t) \\ | ||
\frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda }= & \hat{\beta }{{t}^{\hat{\beta }-1}} | \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda }= & \hat{\beta }{{t}^{\hat{\beta }-1}} | ||
Line 257: | Line 257: | ||
The Crow instantaneous failure intensity confidence bounds are given as: | The Crow instantaneous failure intensity confidence bounds are given as: | ||
:<math>\begin{align} | |||
{{[{{\lambda }_{i}}(t)]}_{L}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{U}}} \\ | {{[{{\lambda }_{i}}(t)]}_{L}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{U}}} \\ | ||
{{[{{\lambda }_{i}}(t)]}_{U}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{L}}} | {{[{{\lambda }_{i}}(t)]}_{U}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{L}}} | ||
Line 266: | Line 266: | ||
The time, <math>T\,\!</math>. must be positive, thus <math>\ln T\,\!</math> is approximately treated as being normally distributed. | The time, <math>T\,\!</math>. must be positive, thus <math>\ln T\,\!</math> is approximately treated as being normally distributed. | ||
:<math>\frac{\ln (\hat{T})-\ln (T)}{\sqrt{Var\left[ \ln (\hat{T}) \right]}}\ \tilde{\ }\ N(0,1)\,\!</math> | |||
The confidence bounds on the time are given by: | The confidence bounds on the time are given by: | ||
:<math>CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\!</math> | |||
where: | |||
:<math>Var(\hat{T})={{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\!</math> | |||
The variance calculation is the same as the calculations in the confidence bounds on [[Confidence_Bounds_for_Repairable_Systems_Analysis#Beta|Beta]]. | The variance calculation is the same as the calculations in the confidence bounds on [[Confidence_Bounds_for_Repairable_Systems_Analysis#Beta|Beta]]. | ||
:<math>\hat{T}={{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}\,\!</math> | |||
:<math>\begin{align} | |||
\frac{\partial T}{\partial \beta }= & \frac{{{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}\ln (\lambda \cdot {{m}_{c}})}{{{(1-\beta )}^{2}}} \\ | \frac{\partial T}{\partial \beta }= & \frac{{{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}\ln (\lambda \cdot {{m}_{c}})}{{{(1-\beta )}^{2}}} \\ | ||
\frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}}{\lambda (1-\beta )} | \frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}}{\lambda (1-\beta )} | ||
Line 288: | Line 288: | ||
Step 1: Calculate: | Step 1: Calculate: | ||
:<math>\hat{T}={{\left( \frac{{{\lambda }_{c}}(T)}{{\hat{\lambda }}} \right)}^{\tfrac{1}{\beta -1}}}\,\!</math> | |||
Step 2: Estimate the number of failures: | Step 2: Estimate the number of failures: | ||
:<math>N(\hat{T})=\hat{\lambda }{{\hat{T}}^{{\hat{\beta }}}}\,\!</math> | |||
Step 3: Obtain the confidence bounds on time given the cumulative failure intensity by solving for <math>{{t}_{l}}\,\!</math> and <math>{{t}_{u}}\,\!</math> in the following equations: | Step 3: Obtain the confidence bounds on time given the cumulative failure intensity by solving for <math>{{t}_{l}}\,\!</math> and <math>{{t}_{u}}\,\!</math> in the following equations: | ||
:<math>\begin{align} | |||
& {{t}_{l}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot {{\lambda }_{c}}(T)} \\ | & {{t}_{l}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot {{\lambda }_{c}}(T)} \\ | ||
& {{t}_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot {{\lambda }_{c}}(T)} | & {{t}_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot {{\lambda }_{c}}(T)} | ||
\end{align}\,\!</math> | \end{align}\,\!</math> | ||
===Time Given Instantaneous MTBF=== | ===Time Given Instantaneous MTBF=== | ||
Line 307: | Line 305: | ||
The time, <math>T\,\!</math>. must be positive, thus <math>\ln T\,\!</math> is approximately treated as being normally distributed. | The time, <math>T\,\!</math>. must be positive, thus <math>\ln T\,\!</math> is approximately treated as being normally distributed. | ||
:<math>\frac{\ln (\hat{T})-\ln (T)}{\sqrt{Var\left[ \ln (\hat{T}) \right]}}\ \tilde{\ }\ N(0,1)\,\!</math> | |||
The confidence bounds on the time are given by: | The confidence bounds on the time are given by: | ||
:<math>CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\!</math> | |||
where: | |||
:<math>Var(\hat{T})={{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\!</math> | |||
The variance calculation is the same as the calculations in the confidence bounds on [[Confidence_Bounds_for_Repairable_Systems_Analysis#Beta|Beta]]. | The variance calculation is the same as the calculations in the confidence bounds on [[Confidence_Bounds_for_Repairable_Systems_Analysis#Beta|Beta]]. | ||
:<math>\hat{T}={{(\lambda \beta \cdot MTB{{F}_{i}})}^{1/(1-\beta )}}\,\!</math> | |||
:<math>\begin{align} | |||
\frac{\partial T}{\partial \beta }= & {{\left( \lambda \beta \cdot MTB{{F}_{i}} \right)}^{1/(1-\beta )}}[\frac{1}{{{(1-\beta )}^{2}}}\ln (\lambda \beta \cdot MTB{{F}_{i}})+\frac{1}{\beta (1-\beta )}] \\ | \frac{\partial T}{\partial \beta }= & {{\left( \lambda \beta \cdot MTB{{F}_{i}} \right)}^{1/(1-\beta )}}[\frac{1}{{{(1-\beta )}^{2}}}\ln (\lambda \beta \cdot MTB{{F}_{i}})+\frac{1}{\beta (1-\beta )}] \\ | ||
\frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \beta \cdot MTB{{F}_{i}})}^{1/(1-\beta )}}}{\lambda (1-\beta )} | \frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \beta \cdot MTB{{F}_{i}})}^{1/(1-\beta )}}}{\lambda (1-\beta )} | ||
Line 333: | Line 331: | ||
'''Failure Terminated Data''' | '''Failure Terminated Data''' | ||
:<math>\hat{T}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{c})}^{1/(1-\beta )}}\,\!</math> | |||
So the lower an upper bounds on time are: | So the lower an upper bounds on time are: | ||
:<math>{{\hat{T}}_{L}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{c}_{1}}})}^{1/(1-\beta )}}\,\!</math> | |||
:<math>{{\hat{T}}_{U}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{c}_{2}}})}^{1/(1-\beta )}}\,\!</math> | |||
'''Time Terminated Data''' | '''Time Terminated Data''' | ||
:<math>\hat{T}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{\Pi })}^{1/(1-\beta )}}\,\!</math> | |||
So the lower and upper bounds on time are: | So the lower and upper bounds on time are: | ||
:<math>{{\hat{T}}_{L}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{\Pi }_{1}}})}^{1/(1-\beta )}}\,\!</math> | |||
:<math>{{\hat{T}}_{U}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{\Pi }_{2}}})}^{1/(1-\beta )}}\,\!</math> | |||
===Time Given Cumulative Failure Intensity=== | ===Time Given Cumulative Failure Intensity=== | ||
Line 357: | Line 353: | ||
The time, <math>T\,\!</math>. must be positive, thus <math>\ln T\,\!</math> is approximately treated as being normally distributed. | The time, <math>T\,\!</math>. must be positive, thus <math>\ln T\,\!</math> is approximately treated as being normally distributed. | ||
:<math>\frac{\ln (\hat{T})-\ln (T)}{\sqrt{Var\left[ \ln \hat{T} \right]}}\ \tilde{\ }\ N(0,1)\,\!</math> | |||
The confidence bounds on the time are given by: | The confidence bounds on the time are given by: | ||
:<math>CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\!</math> | |||
where: | |||
:<math>Var(\hat{T})={{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\!</math> | |||
The variance calculation is the same as the calculations given in the confidence bounds on [[Confidence_Bounds_for_Repairable_Systems_Analysis#Beta|Beta]]. | The variance calculation is the same as the calculations given in the confidence bounds on [[Confidence_Bounds_for_Repairable_Systems_Analysis#Beta|Beta]]. | ||
:<math>\hat{T}={{\left( \frac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\,\!</math> | |||
:<math>\begin{align} | |||
\frac{\partial T}{\partial \beta }= & \frac{-{{\left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\ln \left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}{{{(1-\beta )}^{2}}} \\ | \frac{\partial T}{\partial \beta }= & \frac{-{{\left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\ln \left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}{{{(1-\beta )}^{2}}} \\ | ||
\frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )} | \frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )} | ||
Line 380: | Line 375: | ||
Step 1: Calculate: | Step 1: Calculate: | ||
:<math>\hat{T}={{\left( \frac{{{\lambda }_{c}}(T)}{{\hat{\lambda }}} \right)}^{\tfrac{1}{\beta -1}}}\,\!</math> | |||
Step 2: Estimate the number of failures: | Step 2: Estimate the number of failures: | ||
:<math>N(\hat{T})=\hat{\lambda }{{\hat{T}}^{{\hat{\beta }}}}\,\!</math> | |||
Step 3: Obtain the confidence bounds on time given the cumulative failure intensity by solving for <math>{{t}_{l}}\,\!</math> and <math>{{t}_{u}}\,\!</math> in the following equations: | Step 3: Obtain the confidence bounds on time given the cumulative failure intensity by solving for <math>{{t}_{l}}\,\!</math> and <math>{{t}_{u}}\,\!</math> in the following equations: | ||
:<math>\begin{align} | |||
{{t}_{l}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot {{\lambda }_{c}}(T)} \\ | {{t}_{l}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot {{\lambda }_{c}}(T)} \\ | ||
{{t}_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot {{\lambda }_{c}}(T)} | {{t}_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot {{\lambda }_{c}}(T)} | ||
Line 397: | Line 392: | ||
These bounds are based on: | These bounds are based on: | ||
:<math>\frac{\ln (\hat{T})-\ln (T)}{\sqrt{Var\left[ \ln (\hat{T}) \right]}}\sim N(0,1)\,\!</math> | |||
The confidence bounds on the time are given by: | The confidence bounds on the time are given by: | ||
:<math>CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\!</math> | |||
where: | |||
:<math>\begin{align} | |||
Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ | Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ | ||
& +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) | & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) | ||
Line 412: | Line 407: | ||
The variance calculation is the same as the calculations given in the confidence bounds on [[Confidence_Bounds_for_Repairable_Systems_Analysis#Beta|Beta]]. | The variance calculation is the same as the calculations given in the confidence bounds on [[Confidence_Bounds_for_Repairable_Systems_Analysis#Beta|Beta]]. | ||
:<math>\hat{T}={{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \cdot \beta } \right)}^{1/(\beta -1)}}\,\!</math> | |||
:<math>\begin{align} | |||
\frac{\partial T}{\partial \beta }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \cdot \beta } \right)}^{1/(\beta -1)}}[-\frac{\ln (\tfrac{{{\lambda }_{i}}(T)}{\lambda \cdot \beta })}{{{(\beta -1)}^{2}}}+\frac{1}{\beta (1-\beta )}] \\ | \frac{\partial T}{\partial \beta }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \cdot \beta } \right)}^{1/(\beta -1)}}[-\frac{\ln (\tfrac{{{\lambda }_{i}}(T)}{\lambda \cdot \beta })}{{{(\beta -1)}^{2}}}+\frac{1}{\beta (1-\beta )}] \\ | ||
\frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \cdot \beta } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )} | \frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \cdot \beta } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )} | ||
Line 428: | Line 423: | ||
These bounds are based on: | These bounds are based on: | ||
:<math>\log it(\hat{R}(t))\sim N(0,1)\,\!</math> | |||
:<math>\log it(\hat{R}(t))=\ln \left\{ \frac{\hat{R}(t)}{1-\hat{R}(t)} \right\}\,\!</math> | |||
The confidence bounds on reliability are given by: | The confidence bounds on reliability are given by: | ||
:<math>CB=\frac{\hat{R}(t)}{\hat{R}(t)+(1-\hat{R}(t)){{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{R}(t))}/\left[ \hat{R}(t)(1-\hat{R}(t)) \right]}}}\,\!</math> | |||
:<math>Var(\hat{R}(t))={{\left( \frac{\partial R}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial R}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial R}{\partial \beta } \right)\left( \frac{\partial R}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\!</math> | |||
The variance calculation is the same as the calculations in the confidence bounds on [[Confidence_Bounds_for_Repairable_Systems_Analysis#Beta|Beta]]. | The variance calculation is the same as the calculations in the confidence bounds on [[Confidence_Bounds_for_Repairable_Systems_Analysis#Beta|Beta]]. | ||
:<math>\begin{align} | |||
\frac{\partial R}{\partial \beta }= & {{e}^{-[\hat{\lambda }{{(t+d)}^{\hat{\beta }}}-\hat{\lambda }{{t}^{\hat{\beta }}}]}}[\lambda {{t}^{\hat{\beta }}}\ln (t)-\lambda {{(t+d)}^{\hat{\beta }}}\ln (t+d)] \\ | \frac{\partial R}{\partial \beta }= & {{e}^{-[\hat{\lambda }{{(t+d)}^{\hat{\beta }}}-\hat{\lambda }{{t}^{\hat{\beta }}}]}}[\lambda {{t}^{\hat{\beta }}}\ln (t)-\lambda {{(t+d)}^{\hat{\beta }}}\ln (t+d)] \\ | ||
\frac{\partial R}{\partial \lambda }= & {{e}^{-[\hat{\lambda }{{(t+d)}^{\hat{\beta }}}-\hat{\lambda }{{t}^{\hat{\beta }}}]}}[{{t}^{\hat{\beta }}}-{{(t+d)}^{\hat{\beta }}}] | \frac{\partial R}{\partial \lambda }= & {{e}^{-[\hat{\lambda }{{(t+d)}^{\hat{\beta }}}-\hat{\lambda }{{t}^{\hat{\beta }}}]}}[{{t}^{\hat{\beta }}}-{{(t+d)}^{\hat{\beta }}}] | ||
Line 450: | Line 445: | ||
With failure terminated data, the 100( <math>1-\alpha \,\!</math> )% confidence interval for the current reliability at time <math>t\,\!</math> in a specified mission time <math>d\,\!</math> is: | With failure terminated data, the 100( <math>1-\alpha \,\!</math> )% confidence interval for the current reliability at time <math>t\,\!</math> in a specified mission time <math>d\,\!</math> is: | ||
:<math>({{[\hat{R}(d)]}^{\tfrac{1}{{{p}_{1}}}}},{{[\hat{R}(d)]}^{\tfrac{1}{{{p}_{2}}}}})\,\!</math> | |||
where | |||
:<math>\hat{R}(\tau )={{e}^{-[\hat{\lambda }{{(t+\tau )}^{\hat{\beta }}}-\hat{\lambda }{{t}^{\hat{\beta }}}]}}\,\!</math> | |||
<math>{{p}_{1}}\,\!</math> and <math>{{p}_{2}}\,\!</math> can be obtained from the equations for failure terminated data for the confidence bounds on [[Confidence_Bounds_for_Repairable_Systems_Analysis#Instantaneous_MTBF|Instantaneous MTBF]]. | <math>{{p}_{1}}\,\!</math> and <math>{{p}_{2}}\,\!</math> can be obtained from the equations for failure terminated data for the confidence bounds on [[Confidence_Bounds_for_Repairable_Systems_Analysis#Instantaneous_MTBF|Instantaneous MTBF]]. | ||
Line 462: | Line 457: | ||
With time terminated data, the 100( <math>1-\alpha \,\!</math> )% confidence interval for the current reliability at time <math>t\,\!</math> in a specified mission time <math>\tau \,\!</math> is: | With time terminated data, the 100( <math>1-\alpha \,\!</math> )% confidence interval for the current reliability at time <math>t\,\!</math> in a specified mission time <math>\tau \,\!</math> is: | ||
:<math>({{[\hat{R}(d)]}^{\tfrac{1}{{{p}_{1}}}}},{{[\hat{R}(d)]}^{\tfrac{1}{{{p}_{2}}}}})\,\!</math> | |||
where: | |||
:<math>\hat{R}(d)={{e}^{-[\hat{\lambda }{{(t+d)}^{\hat{\beta }}}-\hat{\lambda }{{t}^{\hat{\beta }}}]}}\,\!</math> | |||
<math>{{p}_{1}}\,\!</math> and <math>{{p}_{2}}\,\!</math> can be obtained from the equation for time terminated data for the confidence bounds on [[Confidence_Bounds_for_Repairable_Systems_Analysis#Instantaneous_MTBF|Instantaneous MTBF]]. | <math>{{p}_{1}}\,\!</math> and <math>{{p}_{2}}\,\!</math> can be obtained from the equation for time terminated data for the confidence bounds on [[Confidence_Bounds_for_Repairable_Systems_Analysis#Instantaneous_MTBF|Instantaneous MTBF]]. | ||
Line 474: | Line 469: | ||
The time, <math>t\,\!</math>. must be positive, thus <math>\ln t\,\!</math> is approximately treated as being normally distributed. | The time, <math>t\,\!</math>. must be positive, thus <math>\ln t\,\!</math> is approximately treated as being normally distributed. | ||
:<math>\frac{\ln (\hat{t})-\ln (t)}{\sqrt{Var\left[ \ln (\hat{t}) \right]}}\sim N(0,1)\,\!</math> | |||
The confidence bounds on time are calculated by using: | The confidence bounds on time are calculated by using: | ||
:<math>CB=\hat{t}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{t})}/\hat{t}}}\,\!</math> | |||
where: | |||
:<math>Var(\hat{t})={{\left( \frac{\partial t}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial t}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial t}{\partial \beta } \right)\left( \frac{\partial t}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\!</math> | |||
<math>\hat{t}\,\!</math> is calculated numerically from: | <math>\hat{t}\,\!</math> is calculated numerically from: | ||
:<math>\hat{R}(d)={{e}^{-[\hat{\lambda }{{(\hat{t}+d)}^{\hat{\beta }}}-\hat{\lambda }{{{\hat{t}}}^{\hat{\beta }}}]}}\text{ };\text{ }d\text{ = mission time}\,\!</math> | |||
The variance calculations are done by: | The variance calculations are done by: | ||
:<math>\begin{align} | |||
\frac{\partial t}{\partial \beta }= & \frac{{{{\hat{t}}}^{{\hat{\beta }}}}\ln (\hat{t})-{{(\hat{t}+d)}^{{\hat{\beta }}}}\ln (\hat{t}+d)}{\hat{\beta }{{(\hat{t}+d)}^{\hat{\beta }-1}}-\hat{\beta }{{{\hat{t}}}^{\hat{\beta }-1}}} \\ | \frac{\partial t}{\partial \beta }= & \frac{{{{\hat{t}}}^{{\hat{\beta }}}}\ln (\hat{t})-{{(\hat{t}+d)}^{{\hat{\beta }}}}\ln (\hat{t}+d)}{\hat{\beta }{{(\hat{t}+d)}^{\hat{\beta }-1}}-\hat{\beta }{{{\hat{t}}}^{\hat{\beta }-1}}} \\ | ||
\frac{\partial t}{\partial \lambda }= & \frac{{{{\hat{t}}}^{{\hat{\beta }}}}-{{(\hat{t}+d)}^{{\hat{\beta }}}}}{\hat{\lambda }\hat{\beta }{{(\hat{t}+d)}^{\hat{\beta }-1}}-\hat{\lambda }\hat{\beta }{{{\hat{t}}}^{\hat{\beta }-1}}} | \frac{\partial t}{\partial \lambda }= & \frac{{{{\hat{t}}}^{{\hat{\beta }}}}-{{(\hat{t}+d)}^{{\hat{\beta }}}}}{\hat{\lambda }\hat{\beta }{{(\hat{t}+d)}^{\hat{\beta }-1}}-\hat{\lambda }\hat{\beta }{{{\hat{t}}}^{\hat{\beta }-1}}} | ||
Line 506: | Line 501: | ||
Step 4: If <math>{{t}_{1}}<{{t}_{2}}\,\!</math>. then <math>{{t}_{lower}}={{t}_{1}}\,\!</math> and <math>{{t}_{upper}}={{t}_{2}}\,\!</math>. If <math>{{t}_{1}}>{{t}_{2}}\,\!</math>. then <math>{{t}_{lower}}={{t}_{2}}\,\!</math> and <math>{{t}_{upper}}={{t}_{1}}\,\!</math>. | Step 4: If <math>{{t}_{1}}<{{t}_{2}}\,\!</math>. then <math>{{t}_{lower}}={{t}_{1}}\,\!</math> and <math>{{t}_{upper}}={{t}_{2}}\,\!</math>. If <math>{{t}_{1}}>{{t}_{2}}\,\!</math>. then <math>{{t}_{lower}}={{t}_{2}}\,\!</math> and <math>{{t}_{upper}}={{t}_{1}}\,\!</math>. | ||
'''Time Terminated Data''' | |||
Step 1: Calculate <math>({{\hat{R}}_{lower}},{{\hat{R}}_{upper}})=({{R}^{\tfrac{1}{{{\Pi }_{1}}}}},{{R}^{\tfrac{1}{{{\Pi }_{2}}}}})\,\!</math>. | Step 1: Calculate <math>({{\hat{R}}_{lower}},{{\hat{R}}_{upper}})=({{R}^{\tfrac{1}{{{\Pi }_{1}}}}},{{R}^{\tfrac{1}{{{\Pi }_{2}}}}})\,\!</math>. | ||
Line 521: | Line 515: | ||
The mission time, <math>d\,\!</math>. must be positive, thus <math>\ln \left( d \right)\,\!</math> is approximately treated as being normally distributed. | The mission time, <math>d\,\!</math>. must be positive, thus <math>\ln \left( d \right)\,\!</math> is approximately treated as being normally distributed. | ||
:<math>\frac{\ln (\hat{d})-\ln (d)}{\sqrt{Var\left[ \ln (\hat{d}) \right]}}\sim N(0,1)\,\!</math> | |||
The confidence bounds on mission time are given by using: | The confidence bounds on mission time are given by using: | ||
:<math>CB=\hat{d}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{d})}/\hat{d}}}\,\!</math> | |||
where: | |||
:<math>Var(\hat{d})={{\left( \frac{\partial d}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial d}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial td}{\partial \beta } \right)\left( \frac{\partial d}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\!</math> | |||
Calculate <math>\hat{d}\,\!</math> from: | Calculate <math>\hat{d}\,\!</math> from: | ||
:<math>\hat{d}={{\left[ {{t}^{{\hat{\beta }}}}-\frac{\ln (R)}{{\hat{\lambda }}} \right]}^{\tfrac{1}{{\hat{\beta }}}}}-t\,\!</math> | |||
The variance calculations are done by: | The variance calculations are done by: | ||
:<math>\begin{align} | |||
\frac{\partial d}{\partial \beta }= & \left[ \frac{{{t}^{{\hat{\beta }}}}\ln (t)}{{{(t+\hat{d})}^{{\hat{\beta }}}}}-\ln (t+\hat{d}) \right]\cdot \frac{t+\hat{d}}{{\hat{\beta }}} \\ | \frac{\partial d}{\partial \beta }= & \left[ \frac{{{t}^{{\hat{\beta }}}}\ln (t)}{{{(t+\hat{d})}^{{\hat{\beta }}}}}-\ln (t+\hat{d}) \right]\cdot \frac{t+\hat{d}}{{\hat{\beta }}} \\ | ||
\frac{\partial d}{\partial \lambda }= & \frac{{{t}^{{\hat{\beta }}}}-{{(t+\hat{d})}^{{\hat{\beta }}}}}{\hat{\lambda }\hat{\beta }{{(t+\hat{d})}^{\hat{\beta }-1}}} | \frac{\partial d}{\partial \lambda }= & \frac{{{t}^{{\hat{\beta }}}}-{{(t+\hat{d})}^{{\hat{\beta }}}}}{\hat{\lambda }\hat{\beta }{{(t+\hat{d})}^{\hat{\beta }-1}}} | ||
Line 549: | Line 543: | ||
Step 2: Let <math>R={{\hat{R}}_{lower}}\,\!</math> and solve for <math>{{d}_{1}}\,\!</math> such that: | Step 2: Let <math>R={{\hat{R}}_{lower}}\,\!</math> and solve for <math>{{d}_{1}}\,\!</math> such that: | ||
:<math>{{d}_{1}}={{\left( {{t}^{{\hat{\beta }}}}-\frac{\ln ({{R}_{lower}})}{{\hat{\lambda }}} \right)}^{\tfrac{1}{{\hat{\beta }}}}}-t\,\!</math> | |||
Step 3: Let <math>R={{\hat{R}}_{upper}}\,\!</math> and solve for <math>{{d}_{2}}\,\!</math> such that: | Step 3: Let <math>R={{\hat{R}}_{upper}}\,\!</math> and solve for <math>{{d}_{2}}\,\!</math> such that: | ||
:<math>{{d}_{2}}={{\left( {{t}^{{\hat{\beta }}}}-\frac{\ln ({{R}_{upper}})}{{\hat{\lambda }}} \right)}^{\tfrac{1}{{\hat{\beta }}}}}-t\,\!</math> | |||
Step 4: If <math>{{d}_{1}}<{{d}_{2}}\,\!</math>. then <math>{{d}_{lower}}={{d}_{1}}\,\!</math> and <math>{{d}_{upper}}={{d}_{2}}\,\!</math>. If <math>{{d}_{1}}>{{d}_{2}}\,\!</math>. then <math>{{d}_{lower}}={{d}_{2}}\,\!</math> and <math>{{d}_{upper}}={{d}_{1}}\,\!</math>. | Step 4: If <math>{{d}_{1}}<{{d}_{2}}\,\!</math>. then <math>{{d}_{lower}}={{d}_{1}}\,\!</math> and <math>{{d}_{upper}}={{d}_{2}}\,\!</math>. If <math>{{d}_{1}}>{{d}_{2}}\,\!</math>. then <math>{{d}_{lower}}={{d}_{2}}\,\!</math> and <math>{{d}_{upper}}={{d}_{1}}\,\!</math>. | ||
'''Time Terminated Data''' | '''Time Terminated Data''' | ||
Line 572: | Line 565: | ||
The cumulative number of failures, <math>N(t)\,\!</math>. must be positive, thus <math>\ln \left( N(t) \right)\,\!</math> is approximately treated as being normally distributed. | The cumulative number of failures, <math>N(t)\,\!</math>. must be positive, thus <math>\ln \left( N(t) \right)\,\!</math> is approximately treated as being normally distributed. | ||
:<math>\frac{\ln (\hat{N}(t))-\ln (N(t))}{\sqrt{Var\left[ \ln \hat{N}(t) \right]}}\sim N(0,1)\,\!</math> | |||
:<math>N(t)=\hat{N}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{N}(t))}/\hat{N}(t)}}\,\!</math> | |||
where: | |||
:<math>\hat{N}(t)=\hat{\lambda }{{t}^{\hat{\beta }}}\,\!</math> | |||
:<math>\begin{align} | |||
Var(\hat{N}(t))= & {{\left( \frac{\partial N(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial N(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ | Var(\hat{N}(t))= & {{\left( \frac{\partial N(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial N(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ | ||
& +2\left( \frac{\partial N(t)}{\partial \beta } \right)\left( \frac{\partial N(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) | & +2\left( \frac{\partial N(t)}{\partial \beta } \right)\left( \frac{\partial N(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) | ||
Line 588: | Line 580: | ||
The variance calculation is the same as the calculations in the confidence bounds on [[Confidence_Bounds_for_Repairable_Systems_Analysis#Beta|Beta]]. | The variance calculation is the same as the calculations in the confidence bounds on [[Confidence_Bounds_for_Repairable_Systems_Analysis#Beta|Beta]]. | ||
:<math>\begin{align} | |||
\frac{\partial N(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }}}\ln (t) \\ | \frac{\partial N(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }}}\ln (t) \\ | ||
\frac{\partial N(t)}{\partial \lambda }= & t\hat{\beta } | \frac{\partial N(t)}{\partial \lambda }= & t\hat{\beta } | ||
Line 594: | Line 586: | ||
====Crow Bounds==== | ====Crow Bounds==== | ||
:<math>\begin{array}{*{35}{l}} | |||
{{N}_{L}}(T)=\tfrac{T}{\hat{\beta }}{{\lambda }_{i}}{{(T)}_{L}} \\ | {{N}_{L}}(T)=\tfrac{T}{\hat{\beta }}{{\lambda }_{i}}{{(T)}_{L}} \\ | ||
{{N}_{U}}(T)=\tfrac{T}{\hat{\beta }}{{\lambda }_{i}}{{(T)}_{U}} \\ | {{N}_{U}}(T)=\tfrac{T}{\hat{\beta }}{{\lambda }_{i}}{{(T)}_{U}} \\ |
Revision as of 23:21, 10 February 2014
In this appendix, we will present the two methods used in the RGA software to estimate the confidence bounds for Repairable Systems Analysis. The Fisher Matrix approach is based on the Fisher Information Matrix and is commonly employed in the reliability field. The Crow bounds were developed by Dr. Larry Crow.
Beta
Fisher Matrix Bounds
The parameter [math]\displaystyle{ \beta \,\! }[/math] must be positive, thus [math]\displaystyle{ \ln \beta \,\! }[/math] is approximately treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln (\hat{\beta })-\ln (\beta )}{\sqrt{Var\left[ \ln (\hat{\beta }) \right]}}\ \tilde{\ }\ N(0,1)\,\! }[/math]
- [math]\displaystyle{ C{{B}_{\beta }}=\hat{\beta }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\beta })}/\hat{\beta }}}\,\! }[/math]
- [math]\displaystyle{ \hat{\beta }=\frac{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,{{N}_{q}}}{\hat{\lambda }\underset{q=1}{\overset{K}{\mathop{\sum }}}\,\left[ (T_{q}^{\hat{\beta }}\ln ({{T}_{q}})-S_{q}^{\hat{\beta }}\ln ({{S}_{q}}) \right]-\underset{q=1}{\overset{K}{\mathop{\sum }}}\,\underset{i=1}{\overset{{{N}_{q}}}{\mathop{\sum }}}\,\ln ({{X}_{i}}{{}_{q}})}\,\! }[/math]
All variance can be calculated using the Fisher Information Matrix.
[math]\displaystyle{ \Lambda \,\! }[/math] is the natural log-likelihood function.
- [math]\displaystyle{ \Lambda =\underset{q=1}{\overset{K}{\mathop \sum }}\,\left[ {{N}_{q}}(\ln (\lambda )+\ln (\beta ))-\lambda (T_{q}^{\beta }-S_{q}^{\beta })+(\beta -1)\underset{i=1}{\overset{{{N}_{q}}}{\mathop \sum }}\,\ln ({{x}_{iq}}) \right]\,\! }[/math]
- [math]\displaystyle{ \frac{{{\partial }^{2}}\Lambda }{\partial {{\lambda }^{2}}}=-\frac{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,{{N}_{q}}}{{{\lambda }^{2}}}\,\! }[/math]
- [math]\displaystyle{ \frac{{{\partial }^{2}}\Lambda }{\partial \lambda \partial \beta }=-\underset{q=1}{\overset{K}{\mathop \sum }}\,\left[ T_{q}^{\beta }\ln ({{T}_{q}})-S_{q}^{\beta }\ln ({{S}_{q}}) \right]\,\! }[/math]
- [math]\displaystyle{ \frac{{{\partial }^{2}}\Lambda }{\partial {{\beta }^{2}}}=-\frac{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,{{N}_{q}}}{{{\beta }^{2}}}-\lambda \underset{q=1}{\overset{K}{\mathop \sum }}\,\left[ T_{q}^{\beta }{{(\ln ({{T}_{q}}))}^{2}}-S_{q}^{\beta }{{(\ln ({{S}_{q}}))}^{2}} \right]\,\! }[/math]
Crow Bounds
Calculate the conditional maximum likelihood estimate of [math]\displaystyle{ \tilde{\beta \,\!}\,\! }[/math] :
- [math]\displaystyle{ \tilde{\beta }=\frac{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,{{M}_{q}}}{\underset{q=1}{\overset{K}{\mathop{\sum }}}\,\underset{i=1}{\overset{M}{\mathop{\sum }}}\,\ln \left( \tfrac{{{T}_{q}}}{{{X}_{iq}}} \right)}\,\! }[/math]
The Crow 2-sided [math]\displaystyle{ (1-a)\,\! }[/math] 100% confidence bounds on [math]\displaystyle{ \beta \,\! }[/math] are:
- [math]\displaystyle{ \begin{align} {{\beta }_{L}}= & \tilde{\beta }\frac{\chi _{\tfrac{\alpha }{2},2M}^{2}}{2M} \\ {{\beta }_{U}}= & \tilde{\beta }\frac{\chi _{1-\tfrac{\alpha }{2},2M}^{2}}{2M} \end{align}\,\! }[/math]
Lambda=
Fisher Matrix Bounds
The parameter [math]\displaystyle{ \lambda \,\! }[/math] must be positive, thus [math]\displaystyle{ \ln \lambda \,\! }[/math] is approximately treated as being normally distributed. These bounds are based on:
- [math]\displaystyle{ \frac{\ln (\hat{\lambda })-\ln (\lambda )}{\sqrt{Var\left[ \ln (\hat{\lambda }) \right]}}\ \tilde{\ }\ N(0,1)\,\! }[/math]
The approximate confidence bounds on [math]\displaystyle{ \lambda \,\! }[/math] are given as:
- [math]\displaystyle{ C{{B}_{\lambda }}=\hat{\lambda }{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{\lambda })}/\hat{\lambda }}}\,\! }[/math]
where [math]\displaystyle{ \hat{\lambda }=\tfrac{n}{T_{K}^{{\hat{\beta }}}}\,\! }[/math].
The variance calculation is the same the equations given in the confidence bounds on Beta.
Crow Bounds
Time Terminated
The confidence bounds on [math]\displaystyle{ \lambda \,\! }[/math] for time terminated data are calculated using:
- [math]\displaystyle{ \begin{align} {{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot \underset{q=1}{\overset{K}{\mathop{\sum }}}\,T_{q}^{^{\beta }}} \\ {{\lambda }_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot \underset{q=1}{\overset{K}{\mathop{\sum }}}\,T_{q}^{^{\beta }}} \end{align}\,\! }[/math]
Failure Terminated
The confidence bounds on [math]\displaystyle{ \lambda \,\! }[/math] for failure terminated data are calculated using:
- [math]\displaystyle{ \begin{align} {{\lambda }_{L}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot \underset{q=1}{\overset{K}{\mathop{\sum }}}\,T_{q}^{^{\beta }}} \\ {{\lambda }_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N}^{2}}{2\cdot \underset{q=1}{\overset{K}{\mathop{\sum }}}\,T_{q}^{^{\beta }}} \end{align}\,\! }[/math]
Growth Rate
Since the growth rate is equal to [math]\displaystyle{ 1-\beta \,\! }[/math]. the confidence bounds are:
- [math]\displaystyle{ \begin{align} Gr.\text{ }Rat{{e}_{L}}= & 1-{{\beta }_{U}} \\ Gr.\text{ }Rat{{e}_{U}}= & 1-{{\beta }_{L}} \end{align}\,\! }[/math]
[math]\displaystyle{ {{\beta }_{L}}\,\! }[/math] and [math]\displaystyle{ {{\beta }_{U}}\,\! }[/math] are obtained using the methods described above in the confidence bounds on Beta.
Cumulative MTBF
Fisher Matrix Bounds
The cumulative MTBF, [math]\displaystyle{ {{m}_{c}}(t)\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln {{m}_{c}}(t)\,\! }[/math] is approximately treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln ({{\hat{m}}_{c}}(t))-\ln ({{m}_{c}}(t))}{\sqrt{Var\left[ \ln ({{\hat{m}}_{c}}(t)) \right]}}\ \tilde{\ }\ N(0,1)\,\! }[/math]
The approximate confidence bounds on the cumulative MTBF are then estimated from:
- [math]\displaystyle{ CB={{\hat{m}}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{\hat{m}}_{c}}(t))}/{{\hat{m}}_{c}}(t)}}\,\! }[/math]
where:
- [math]\displaystyle{ {{\hat{m}}_{c}}(t)=\frac{1}{\hat{\lambda }}{{t}^{1-\hat{\beta }}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} Var({{\hat{m}}_{c}}(t))= & {{\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{m}_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\, \end{align}\,\! }[/math]
The variance calculation is the same as the calculations given in the confidence bounds on Beta.
- [math]\displaystyle{ \begin{align} \frac{\partial {{m}_{c}}(t)}{\partial \beta }= & -\frac{1}{\hat{\lambda }}{{t}^{1-\hat{\beta }}}\ln (t) \\ \frac{\partial {{m}_{c}}(t)}{\partial \lambda }= & -\frac{1}{{{\hat{\lambda }}^{2}}}{{t}^{1-\hat{\beta }}} \end{align}\,\! }[/math]
Crow Bounds
To calculate the Crow confidence bounds on cumulative MTBF, first calculate the Crow cumulative failure intensity confidence bounds:
- [math]\displaystyle{ C{{(t)}_{L}}=\frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t}\,\! }[/math]
- [math]\displaystyle{ C{{(t)}_{u}}=\frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot t}\,\! }[/math]
Then
- [math]\displaystyle{ \begin{align} {{[MTB{{F}_{c}}]}_{L}}= & \frac{1}{C{{(t)}_{U}}} \\ {{[MTB{{F}_{c}}]}_{U}}= & \frac{1}{C{{(t)}_{L}}} \end{align}\,\! }[/math]
Instantaneous MTBF
Fisher Matrix Bounds
The instantaneous MTBF, [math]\displaystyle{ {{m}_{i}}(t)\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln {{m}_{i}}(t)\,\! }[/math] is approximately treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln ({{\hat{m}}_{i}}(t))-\ln ({{m}_{i}}(t))}{\sqrt{Var\left[ \ln ({{\hat{m}}_{i}}(t)) \right]}}\ \tilde{\ }\ N(0,1)\,\! }[/math]
The approximate confidence bounds on the instantaneous MTBF are then estimated from:
- [math]\displaystyle{ CB={{\hat{m}}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{\hat{m}}_{i}}(t))}/{{\hat{m}}_{i}}(t)}}\,\! }[/math]
where:
- [math]\displaystyle{ {{\hat{m}}_{i}}(t)=\frac{1}{\lambda \beta {{t}^{\beta -1}}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} Var({{\hat{m}}_{i}}(t))= & {{\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{m}_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{m}_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) \end{align}\,\! }[/math]
The variance calculation is the same as the calculations given in the confidence bounds on Beta.
- [math]\displaystyle{ \begin{align} \frac{\partial {{m}_{i}}(t)}{\partial \beta }= & -\frac{1}{\hat{\lambda }{{\hat{\beta }}^{2}}}{{t}^{1-\hat{\beta }}}-\frac{1}{\hat{\lambda }\hat{\beta }}{{t}^{1-\hat{\beta }}}\ln (t) \\ \frac{\partial {{m}_{i}}(t)}{\partial \lambda }= & -\frac{1}{{{\hat{\lambda }}^{2}}\hat{\beta }}{{t}^{1-\hat{\beta }}} \end{align}\,\! }[/math]
Crow Bounds
Failure Terminated Data
To calculate the bounds for failure terminated data, consider the following equation:
- [math]\displaystyle{ G(\mu |n)=\mathop{}_{0}^{\infty }\frac{{{e}^{-x}}{{x}^{n-2}}}{(n-2)!}\underset{i=0}{\overset{n-1}{\mathop \sum }}\,\frac{1}{i!}{{\left( \frac{\mu }{x} \right)}^{i}}\exp (-\frac{\mu }{x})\,dx\,\! }[/math]
Find the values [math]\displaystyle{ {{p}_{1}}\,\! }[/math] and [math]\displaystyle{ {{p}_{2}}\,\! }[/math] by finding the solution [math]\displaystyle{ c\,\! }[/math] to [math]\displaystyle{ G({{n}^{2}}/c|n)=\xi \,\! }[/math] for [math]\displaystyle{ \xi =\tfrac{\alpha }{2}\,\! }[/math] and [math]\displaystyle{ \xi =1-\tfrac{\alpha }{2}\,\! }[/math]. respectively. If using the biased parameters, [math]\displaystyle{ \hat{\beta }\,\! }[/math] and [math]\displaystyle{ \hat{\lambda }\,\! }[/math]. then the upper and lower confidence bounds are:
- [math]\displaystyle{ \begin{align} {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot {{p}_{1}} \\ {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot {{p}_{2}} \end{align}\,\! }[/math]
where [math]\displaystyle{ MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\! }[/math]. If using the unbiased parameters, [math]\displaystyle{ \bar{\beta }\,\! }[/math] and [math]\displaystyle{ \bar{\lambda }\,\! }[/math]. then the upper and lower confidence bounds are:
- [math]\displaystyle{ \begin{align} {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot \left( \frac{N-2}{N} \right)\cdot {{p}_{1}} \\ {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot \left( \frac{N-2}{N} \right)\cdot {{p}_{2}} \end{align}\,\! }[/math]
where [math]\displaystyle{ MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\! }[/math].
Time Terminated Data
To calculate the bounds for time terminated data, consider the following equation where [math]\displaystyle{ {{I}_{1}}(.)\,\! }[/math] is the modified Bessel function of order one:
- [math]\displaystyle{ H(x|k)=\underset{j=1}{\overset{k}{\mathop \sum }}\,\frac{{{x}^{2j-1}}}{{{2}^{2j-1}}(j-1)!j!{{I}_{1}}(x)}\,\! }[/math]
Find the values [math]\displaystyle{ {{\Pi }_{1}}\,\! }[/math] and [math]\displaystyle{ {{\Pi }_{2}}\,\! }[/math] by finding the solution [math]\displaystyle{ x\,\! }[/math] to [math]\displaystyle{ H(x|k)=\tfrac{\alpha }{2}\,\! }[/math] and [math]\displaystyle{ H(x|k)=1-\tfrac{\alpha }{2}\,\! }[/math] in the cases corresponding to the lower and upper bounds, respectively.
Calculate [math]\displaystyle{ \Pi =\tfrac{{{n}^{2}}}{4{{x}^{2}}}\,\! }[/math] for each case. If using the biased parameters, [math]\displaystyle{ \hat{\beta }\,\! }[/math] and [math]\displaystyle{ \hat{\lambda }\,\! }[/math]. then the upper and lower confidence bounds are:
- [math]\displaystyle{ \begin{align} {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot {{\Pi }_{1}} \\ {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot {{\Pi }_{2}} \end{align}\,\! }[/math]
where [math]\displaystyle{ MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\! }[/math]. If using the unbiased parameters, [math]\displaystyle{ \bar{\beta }\,\! }[/math] and [math]\displaystyle{ \bar{\lambda }\,\! }[/math]. then the upper and lower confidence bounds are:
- [math]\displaystyle{ \begin{align} {{[MTB{{F}_{i}}]}_{L}}= & MTB{{F}_{i}}\cdot \left( \frac{N-1}{N} \right)\cdot {{\Pi }_{1}} \\ {{[MTB{{F}_{i}}]}_{U}}= & MTB{{F}_{i}}\cdot \left( \frac{N-1}{N} \right)\cdot {{\Pi }_{2}} \end{align}\,\! }[/math]
where [math]\displaystyle{ MTB{{F}_{i}}=\tfrac{1}{\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}}\,\! }[/math].
Cumulative Failure Intensity
Fisher Matrix Bounds
The cumulative failure intensity, [math]\displaystyle{ {{\lambda }_{c}}(t)\,\! }[/math] must be positive, thus [math]\displaystyle{ \ln {{\lambda }_{c}}(t)\,\! }[/math] is approximately treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln ({{\hat{\lambda }}_{c}}(t))-\ln ({{\lambda }_{c}}(t))}{\sqrt{Var\left[ \ln ({{\hat{\lambda }}_{c}}(t)) \right]}}\ \tilde{\ }\ N(0,1)\,\! }[/math]
The approximate confidence bounds on the cumulative failure intensity are then estimated using:
- [math]\displaystyle{ CB={{\hat{\lambda }}_{c}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{\hat{\lambda }}_{c}}(t))}/{{\hat{\lambda }}_{c}}(t)}}\,\! }[/math]
where:
- [math]\displaystyle{ {{\hat{\lambda }}_{c}}(t)=\hat{\lambda }{{t}^{\hat{\beta }-1}}\,\! }[/math]
and:
- [math]\displaystyle{ \begin{align} Var({{\hat{\lambda }}_{c}}(t))= & {{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) \end{align}\,\! }[/math]
The variance calculation is the same as the calculations in the confidence bounds on Beta.
- [math]\displaystyle{ \begin{align} \frac{\partial {{\lambda }_{c}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}\ln (t) \\ \frac{\partial {{\lambda }_{c}}(t)}{\partial \lambda }= & {{t}^{\hat{\beta }-1}} \end{align}\,\! }[/math]
Crow Bounds
The Crow cumulative failure intensity confidence bounds are given by:
- [math]\displaystyle{ C{{(t)}_{L}}=\frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot t}\,\! }[/math]
- [math]\displaystyle{ C{{(t)}_{u}}=\frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot t}\,\! }[/math]
Instantaneous Failure Intensity
Fisher Matrix Bounds
The instantaneous failure intensity, [math]\displaystyle{ {{\lambda }_{i}}(t)\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln {{\lambda }_{i}}(t)\,\! }[/math] is approximately treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln ({{\hat{\lambda }}_{i}}(t))-\ln ({{\lambda }_{i}}(t))}{\sqrt{Var\left[ \ln ({{\hat{\lambda }}_{i}}(t)) \right]}}\sim N(0,1)\,\! }[/math]
The approximate confidence bounds on the instantaneous failure intensity are then estimated from:
- [math]\displaystyle{ CB={{\hat{\lambda }}_{i}}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var({{\hat{\lambda }}_{i}}(t))}/{{\hat{\lambda }}_{i}}(t)}}\,\! }[/math]
where [math]\displaystyle{ {{\lambda }_{i}}(t)=\lambda \beta {{t}^{\beta -1}}\,\! }[/math] and:
- [math]\displaystyle{ \begin{align} Var({{\hat{\lambda }}_{i}}(t))= & {{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta } \right)\left( \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) \end{align}\,\! }[/math]
The variance calculation is the same as the calculations in the confidence bounds on Beta.
- [math]\displaystyle{ \begin{align} \frac{\partial {{\lambda }_{i}}(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }-1}}+\hat{\lambda }\hat{\beta }{{t}^{\hat{\beta }-1}}\ln (t) \\ \frac{\partial {{\lambda }_{i}}(t)}{\partial \lambda }= & \hat{\beta }{{t}^{\hat{\beta }-1}} \end{align}\,\! }[/math]
Crow Bounds
The Crow instantaneous failure intensity confidence bounds are given as:
- [math]\displaystyle{ \begin{align} {{[{{\lambda }_{i}}(t)]}_{L}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{U}}} \\ {{[{{\lambda }_{i}}(t)]}_{U}}= & \frac{1}{{{[MTB{{F}_{i}}]}_{L}}} \end{align}\,\! }[/math]
Time Given Cumulative MTBF
Fisher Matrix Bounds
The time, [math]\displaystyle{ T\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln T\,\! }[/math] is approximately treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln (\hat{T})-\ln (T)}{\sqrt{Var\left[ \ln (\hat{T}) \right]}}\ \tilde{\ }\ N(0,1)\,\! }[/math]
The confidence bounds on the time are given by:
- [math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]
where:
- [math]\displaystyle{ Var(\hat{T})={{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\! }[/math]
The variance calculation is the same as the calculations in the confidence bounds on Beta.
- [math]\displaystyle{ \hat{T}={{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & \frac{{{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}\ln (\lambda \cdot {{m}_{c}})}{{{(1-\beta )}^{2}}} \\ \frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \cdot {{m}_{c}})}^{1/(1-\beta )}}}{\lambda (1-\beta )} \end{align}\,\! }[/math]
Crow Bounds
Step 1: Calculate:
- [math]\displaystyle{ \hat{T}={{\left( \frac{{{\lambda }_{c}}(T)}{{\hat{\lambda }}} \right)}^{\tfrac{1}{\beta -1}}}\,\! }[/math]
Step 2: Estimate the number of failures:
- [math]\displaystyle{ N(\hat{T})=\hat{\lambda }{{\hat{T}}^{{\hat{\beta }}}}\,\! }[/math]
Step 3: Obtain the confidence bounds on time given the cumulative failure intensity by solving for [math]\displaystyle{ {{t}_{l}}\,\! }[/math] and [math]\displaystyle{ {{t}_{u}}\,\! }[/math] in the following equations:
- [math]\displaystyle{ \begin{align} & {{t}_{l}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot {{\lambda }_{c}}(T)} \\ & {{t}_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot {{\lambda }_{c}}(T)} \end{align}\,\! }[/math]
Time Given Instantaneous MTBF
Fisher Matrix Bounds
The time, [math]\displaystyle{ T\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln T\,\! }[/math] is approximately treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln (\hat{T})-\ln (T)}{\sqrt{Var\left[ \ln (\hat{T}) \right]}}\ \tilde{\ }\ N(0,1)\,\! }[/math]
The confidence bounds on the time are given by:
- [math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]
where:
- [math]\displaystyle{ Var(\hat{T})={{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\! }[/math]
The variance calculation is the same as the calculations in the confidence bounds on Beta.
- [math]\displaystyle{ \hat{T}={{(\lambda \beta \cdot MTB{{F}_{i}})}^{1/(1-\beta )}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & {{\left( \lambda \beta \cdot MTB{{F}_{i}} \right)}^{1/(1-\beta )}}[\frac{1}{{{(1-\beta )}^{2}}}\ln (\lambda \beta \cdot MTB{{F}_{i}})+\frac{1}{\beta (1-\beta )}] \\ \frac{\partial T}{\partial \lambda }= & \frac{{{(\lambda \beta \cdot MTB{{F}_{i}})}^{1/(1-\beta )}}}{\lambda (1-\beta )} \end{align}\,\! }[/math]
Crow Bounds
Step 1: Calculate the confidence bounds on the instantaneous MTBF.
Step 2: Calculate the bounds on time as follows.
Failure Terminated Data
- [math]\displaystyle{ \hat{T}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{c})}^{1/(1-\beta )}}\,\! }[/math]
So the lower an upper bounds on time are:
- [math]\displaystyle{ {{\hat{T}}_{L}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{c}_{1}}})}^{1/(1-\beta )}}\,\! }[/math]
- [math]\displaystyle{ {{\hat{T}}_{U}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{c}_{2}}})}^{1/(1-\beta )}}\,\! }[/math]
Time Terminated Data
- [math]\displaystyle{ \hat{T}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{\Pi })}^{1/(1-\beta )}}\,\! }[/math]
So the lower and upper bounds on time are:
- [math]\displaystyle{ {{\hat{T}}_{L}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{\Pi }_{1}}})}^{1/(1-\beta )}}\,\! }[/math]
- [math]\displaystyle{ {{\hat{T}}_{U}}={{(\frac{\lambda \beta \cdot MTB{{F}_{i}}}{{{\Pi }_{2}}})}^{1/(1-\beta )}}\,\! }[/math]
Time Given Cumulative Failure Intensity
Fisher Matrix Bounds
The time, [math]\displaystyle{ T\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln T\,\! }[/math] is approximately treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln (\hat{T})-\ln (T)}{\sqrt{Var\left[ \ln \hat{T} \right]}}\ \tilde{\ }\ N(0,1)\,\! }[/math]
The confidence bounds on the time are given by:
- [math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]
where:
- [math]\displaystyle{ Var(\hat{T})={{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\! }[/math]
The variance calculation is the same as the calculations given in the confidence bounds on Beta.
- [math]\displaystyle{ \hat{T}={{\left( \frac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & \frac{-{{\left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\ln \left( \tfrac{{{\lambda }_{c}}(T)}{\lambda } \right)}{{{(1-\beta )}^{2}}} \\ \frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{c}}(T)}{\lambda } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )} \end{align}\,\! }[/math]
Crow Bounds
Step 1: Calculate:
- [math]\displaystyle{ \hat{T}={{\left( \frac{{{\lambda }_{c}}(T)}{{\hat{\lambda }}} \right)}^{\tfrac{1}{\beta -1}}}\,\! }[/math]
Step 2: Estimate the number of failures:
- [math]\displaystyle{ N(\hat{T})=\hat{\lambda }{{\hat{T}}^{{\hat{\beta }}}}\,\! }[/math]
Step 3: Obtain the confidence bounds on time given the cumulative failure intensity by solving for [math]\displaystyle{ {{t}_{l}}\,\! }[/math] and [math]\displaystyle{ {{t}_{u}}\,\! }[/math] in the following equations:
- [math]\displaystyle{ \begin{align} {{t}_{l}}= & \frac{\chi _{\tfrac{\alpha }{2},2N}^{2}}{2\cdot {{\lambda }_{c}}(T)} \\ {{t}_{u}}= & \frac{\chi _{1-\tfrac{\alpha }{2},2N+2}^{2}}{2\cdot {{\lambda }_{c}}(T)} \end{align}\,\! }[/math]
Bounds on Time Given Instantaneous Failure Intensity
Fisher Matrix Bounds
These bounds are based on:
- [math]\displaystyle{ \frac{\ln (\hat{T})-\ln (T)}{\sqrt{Var\left[ \ln (\hat{T}) \right]}}\sim N(0,1)\,\! }[/math]
The confidence bounds on the time are given by:
- [math]\displaystyle{ CB=\hat{T}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{T})}/\hat{T}}}\,\! }[/math]
where:
- [math]\displaystyle{ \begin{align} Var(\hat{T})= & {{\left( \frac{\partial T}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial T}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial T}{\partial \beta } \right)\left( \frac{\partial T}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) \end{align}\,\! }[/math]
The variance calculation is the same as the calculations given in the confidence bounds on Beta.
- [math]\displaystyle{ \hat{T}={{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \cdot \beta } \right)}^{1/(\beta -1)}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} \frac{\partial T}{\partial \beta }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \cdot \beta } \right)}^{1/(\beta -1)}}[-\frac{\ln (\tfrac{{{\lambda }_{i}}(T)}{\lambda \cdot \beta })}{{{(\beta -1)}^{2}}}+\frac{1}{\beta (1-\beta )}] \\ \frac{\partial T}{\partial \lambda }= & {{\left( \frac{{{\lambda }_{i}}(T)}{\lambda \cdot \beta } \right)}^{1/(\beta -1)}}\frac{1}{\lambda (1-\beta )} \end{align}\,\! }[/math]
Crow Bounds
Step 1: Calculate [math]\displaystyle{ {{\lambda }_{i}}(T)=\tfrac{1}{MTB{{F}_{i}}}\,\! }[/math].
Step 2: Use the equations in the Bounds on Time Given Instantaneous MTBF section to calculate the bounds on time given the instantaneous failure intensity.
Reliability
Fisher Matrix Bounds
These bounds are based on:
- [math]\displaystyle{ \log it(\hat{R}(t))\sim N(0,1)\,\! }[/math]
- [math]\displaystyle{ \log it(\hat{R}(t))=\ln \left\{ \frac{\hat{R}(t)}{1-\hat{R}(t)} \right\}\,\! }[/math]
The confidence bounds on reliability are given by:
- [math]\displaystyle{ CB=\frac{\hat{R}(t)}{\hat{R}(t)+(1-\hat{R}(t)){{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{R}(t))}/\left[ \hat{R}(t)(1-\hat{R}(t)) \right]}}}\,\! }[/math]
- [math]\displaystyle{ Var(\hat{R}(t))={{\left( \frac{\partial R}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial R}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial R}{\partial \beta } \right)\left( \frac{\partial R}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\! }[/math]
The variance calculation is the same as the calculations in the confidence bounds on Beta.
- [math]\displaystyle{ \begin{align} \frac{\partial R}{\partial \beta }= & {{e}^{-[\hat{\lambda }{{(t+d)}^{\hat{\beta }}}-\hat{\lambda }{{t}^{\hat{\beta }}}]}}[\lambda {{t}^{\hat{\beta }}}\ln (t)-\lambda {{(t+d)}^{\hat{\beta }}}\ln (t+d)] \\ \frac{\partial R}{\partial \lambda }= & {{e}^{-[\hat{\lambda }{{(t+d)}^{\hat{\beta }}}-\hat{\lambda }{{t}^{\hat{\beta }}}]}}[{{t}^{\hat{\beta }}}-{{(t+d)}^{\hat{\beta }}}] \end{align}\,\! }[/math]
Crow Bounds
Failure Terminated Data
With failure terminated data, the 100( [math]\displaystyle{ 1-\alpha \,\! }[/math] )% confidence interval for the current reliability at time [math]\displaystyle{ t\,\! }[/math] in a specified mission time [math]\displaystyle{ d\,\! }[/math] is:
- [math]\displaystyle{ ({{[\hat{R}(d)]}^{\tfrac{1}{{{p}_{1}}}}},{{[\hat{R}(d)]}^{\tfrac{1}{{{p}_{2}}}}})\,\! }[/math]
where
- [math]\displaystyle{ \hat{R}(\tau )={{e}^{-[\hat{\lambda }{{(t+\tau )}^{\hat{\beta }}}-\hat{\lambda }{{t}^{\hat{\beta }}}]}}\,\! }[/math]
[math]\displaystyle{ {{p}_{1}}\,\! }[/math] and [math]\displaystyle{ {{p}_{2}}\,\! }[/math] can be obtained from the equations for failure terminated data for the confidence bounds on Instantaneous MTBF.
Time Terminated Data
With time terminated data, the 100( [math]\displaystyle{ 1-\alpha \,\! }[/math] )% confidence interval for the current reliability at time [math]\displaystyle{ t\,\! }[/math] in a specified mission time [math]\displaystyle{ \tau \,\! }[/math] is:
- [math]\displaystyle{ ({{[\hat{R}(d)]}^{\tfrac{1}{{{p}_{1}}}}},{{[\hat{R}(d)]}^{\tfrac{1}{{{p}_{2}}}}})\,\! }[/math]
where:
- [math]\displaystyle{ \hat{R}(d)={{e}^{-[\hat{\lambda }{{(t+d)}^{\hat{\beta }}}-\hat{\lambda }{{t}^{\hat{\beta }}}]}}\,\! }[/math]
[math]\displaystyle{ {{p}_{1}}\,\! }[/math] and [math]\displaystyle{ {{p}_{2}}\,\! }[/math] can be obtained from the equation for time terminated data for the confidence bounds on Instantaneous MTBF.
Time Given Reliability and Mission Time
Fisher Matrix Bounds
The time, [math]\displaystyle{ t\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln t\,\! }[/math] is approximately treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln (\hat{t})-\ln (t)}{\sqrt{Var\left[ \ln (\hat{t}) \right]}}\sim N(0,1)\,\! }[/math]
The confidence bounds on time are calculated by using:
- [math]\displaystyle{ CB=\hat{t}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{t})}/\hat{t}}}\,\! }[/math]
where:
- [math]\displaystyle{ Var(\hat{t})={{\left( \frac{\partial t}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial t}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial t}{\partial \beta } \right)\left( \frac{\partial t}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\! }[/math]
[math]\displaystyle{ \hat{t}\,\! }[/math] is calculated numerically from:
- [math]\displaystyle{ \hat{R}(d)={{e}^{-[\hat{\lambda }{{(\hat{t}+d)}^{\hat{\beta }}}-\hat{\lambda }{{{\hat{t}}}^{\hat{\beta }}}]}}\text{ };\text{ }d\text{ = mission time}\,\! }[/math]
The variance calculations are done by:
- [math]\displaystyle{ \begin{align} \frac{\partial t}{\partial \beta }= & \frac{{{{\hat{t}}}^{{\hat{\beta }}}}\ln (\hat{t})-{{(\hat{t}+d)}^{{\hat{\beta }}}}\ln (\hat{t}+d)}{\hat{\beta }{{(\hat{t}+d)}^{\hat{\beta }-1}}-\hat{\beta }{{{\hat{t}}}^{\hat{\beta }-1}}} \\ \frac{\partial t}{\partial \lambda }= & \frac{{{{\hat{t}}}^{{\hat{\beta }}}}-{{(\hat{t}+d)}^{{\hat{\beta }}}}}{\hat{\lambda }\hat{\beta }{{(\hat{t}+d)}^{\hat{\beta }-1}}-\hat{\lambda }\hat{\beta }{{{\hat{t}}}^{\hat{\beta }-1}}} \end{align}\,\! }[/math]
Crow Bounds
Failure Terminated Data
Step 1: Calculate [math]\displaystyle{ ({{\hat{R}}_{lower}},{{\hat{R}}_{upper}})=({{R}^{\tfrac{1}{{{p}_{1}}}}},{{R}^{\tfrac{1}{{{p}_{2}}}}})\,\! }[/math].
Step 2: Let [math]\displaystyle{ R={{\hat{R}}_{lower}}\,\! }[/math] and solve numerically for [math]\displaystyle{ {{t}_{1}}\,\! }[/math] using [math]\displaystyle{ R={{e}^{-[\hat{\lambda }{{({{{\hat{t}}}_{1}}+d)}^{\hat{\beta }}}-\hat{\lambda }\hat{t}_{1}^{\hat{\beta }}]}}\,\! }[/math].
Step 3: Let [math]\displaystyle{ R={{\hat{R}}_{upper}}\,\! }[/math] and solve numerically for [math]\displaystyle{ {{t}_{2}}\,\! }[/math] using [math]\displaystyle{ R={{e}^{-[\hat{\lambda }{{({{{\hat{t}}}_{2}}+d)}^{\hat{\beta }}}-\hat{\lambda }\hat{t}_{2}^{\hat{\beta }}]}}\,\! }[/math].
Step 4: If [math]\displaystyle{ {{t}_{1}}\lt {{t}_{2}}\,\! }[/math]. then [math]\displaystyle{ {{t}_{lower}}={{t}_{1}}\,\! }[/math] and [math]\displaystyle{ {{t}_{upper}}={{t}_{2}}\,\! }[/math]. If [math]\displaystyle{ {{t}_{1}}\gt {{t}_{2}}\,\! }[/math]. then [math]\displaystyle{ {{t}_{lower}}={{t}_{2}}\,\! }[/math] and [math]\displaystyle{ {{t}_{upper}}={{t}_{1}}\,\! }[/math].
Time Terminated Data
Step 1: Calculate [math]\displaystyle{ ({{\hat{R}}_{lower}},{{\hat{R}}_{upper}})=({{R}^{\tfrac{1}{{{\Pi }_{1}}}}},{{R}^{\tfrac{1}{{{\Pi }_{2}}}}})\,\! }[/math].
Step 2: Let [math]\displaystyle{ R={{\hat{R}}_{lower}}\,\! }[/math] and solve numerically for [math]\displaystyle{ {{t}_{1}}\,\! }[/math] using [math]\displaystyle{ R={{e}^{-[\hat{\lambda }{{({{{\hat{t}}}_{1}}+d)}^{\hat{\beta }}}-\hat{\lambda }\hat{t}_{1}^{\hat{\beta }}]}}\,\! }[/math].
Step 3: Let [math]\displaystyle{ R={{\hat{R}}_{upper}}\,\! }[/math] and solve numerically for [math]\displaystyle{ {{t}_{2}}\,\! }[/math] using [math]\displaystyle{ R={{e}^{-[\hat{\lambda }{{({{{\hat{t}}}_{2}}+d)}^{\hat{\beta }}}-\hat{\lambda }\hat{t}_{2}^{\hat{\beta }}]}}\,\! }[/math].
Step 4: If [math]\displaystyle{ {{t}_{1}}\lt {{t}_{2}}\,\! }[/math]. then [math]\displaystyle{ {{t}_{lower}}={{t}_{1}}\,\! }[/math] and [math]\displaystyle{ {{t}_{upper}}={{t}_{2}}\,\! }[/math]. If [math]\displaystyle{ {{t}_{1}}\gt {{t}_{2}}\,\! }[/math]. then [math]\displaystyle{ {{t}_{lower}}={{t}_{2}}\,\! }[/math] and [math]\displaystyle{ {{t}_{upper}}={{t}_{1}}\,\! }[/math].
Mission Time Given Reliability and Time
Fisher Matrix Bounds
The mission time, [math]\displaystyle{ d\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln \left( d \right)\,\! }[/math] is approximately treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln (\hat{d})-\ln (d)}{\sqrt{Var\left[ \ln (\hat{d}) \right]}}\sim N(0,1)\,\! }[/math]
The confidence bounds on mission time are given by using:
- [math]\displaystyle{ CB=\hat{d}{{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{d})}/\hat{d}}}\,\! }[/math]
where:
- [math]\displaystyle{ Var(\hat{d})={{\left( \frac{\partial d}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial d}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda })+2\left( \frac{\partial td}{\partial \beta } \right)\left( \frac{\partial d}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda })\,\! }[/math]
Calculate [math]\displaystyle{ \hat{d}\,\! }[/math] from:
- [math]\displaystyle{ \hat{d}={{\left[ {{t}^{{\hat{\beta }}}}-\frac{\ln (R)}{{\hat{\lambda }}} \right]}^{\tfrac{1}{{\hat{\beta }}}}}-t\,\! }[/math]
The variance calculations are done by:
- [math]\displaystyle{ \begin{align} \frac{\partial d}{\partial \beta }= & \left[ \frac{{{t}^{{\hat{\beta }}}}\ln (t)}{{{(t+\hat{d})}^{{\hat{\beta }}}}}-\ln (t+\hat{d}) \right]\cdot \frac{t+\hat{d}}{{\hat{\beta }}} \\ \frac{\partial d}{\partial \lambda }= & \frac{{{t}^{{\hat{\beta }}}}-{{(t+\hat{d})}^{{\hat{\beta }}}}}{\hat{\lambda }\hat{\beta }{{(t+\hat{d})}^{\hat{\beta }-1}}} \end{align}\,\! }[/math]
Crow Bounds
Failure Terminated Data
Step 1: Calculate [math]\displaystyle{ ({{\hat{R}}_{lower}},{{\hat{R}}_{upper}})=({{R}^{\tfrac{1}{{{p}_{1}}}}},{{R}^{\tfrac{1}{{{p}_{2}}}}})\,\! }[/math].
Step 2: Let [math]\displaystyle{ R={{\hat{R}}_{lower}}\,\! }[/math] and solve for [math]\displaystyle{ {{d}_{1}}\,\! }[/math] such that:
- [math]\displaystyle{ {{d}_{1}}={{\left( {{t}^{{\hat{\beta }}}}-\frac{\ln ({{R}_{lower}})}{{\hat{\lambda }}} \right)}^{\tfrac{1}{{\hat{\beta }}}}}-t\,\! }[/math]
Step 3: Let [math]\displaystyle{ R={{\hat{R}}_{upper}}\,\! }[/math] and solve for [math]\displaystyle{ {{d}_{2}}\,\! }[/math] such that:
- [math]\displaystyle{ {{d}_{2}}={{\left( {{t}^{{\hat{\beta }}}}-\frac{\ln ({{R}_{upper}})}{{\hat{\lambda }}} \right)}^{\tfrac{1}{{\hat{\beta }}}}}-t\,\! }[/math]
Step 4: If [math]\displaystyle{ {{d}_{1}}\lt {{d}_{2}}\,\! }[/math]. then [math]\displaystyle{ {{d}_{lower}}={{d}_{1}}\,\! }[/math] and [math]\displaystyle{ {{d}_{upper}}={{d}_{2}}\,\! }[/math]. If [math]\displaystyle{ {{d}_{1}}\gt {{d}_{2}}\,\! }[/math]. then [math]\displaystyle{ {{d}_{lower}}={{d}_{2}}\,\! }[/math] and [math]\displaystyle{ {{d}_{upper}}={{d}_{1}}\,\! }[/math].
Time Terminated Data
Step 1: Calculate [math]\displaystyle{ ({{\hat{R}}_{lower}},{{\hat{R}}_{upper}})=({{R}^{\tfrac{1}{{{\Pi }_{1}}}}},{{R}^{\tfrac{1}{{{\Pi }_{2}}}}})\,\! }[/math].
Step 2: Let [math]\displaystyle{ R={{\hat{R}}_{lower}}\,\! }[/math] and solve for [math]\displaystyle{ {{d}_{1}}\,\! }[/math] using the same equation given for the failure terminated data.
Step 3: Let [math]\displaystyle{ R={{\hat{R}}_{upper}}\,\! }[/math] and solve for [math]\displaystyle{ {{d}_{2}}\,\! }[/math] using the same equation given for the failure terminated data.
Step 4: If [math]\displaystyle{ {{d}_{1}}\lt {{d}_{2}}\,\! }[/math]. then [math]\displaystyle{ {{d}_{lower}}={{d}_{1}}\,\! }[/math] and [math]\displaystyle{ {{d}_{upper}}={{d}_{2}}\,\! }[/math]. If [math]\displaystyle{ {{d}_{1}}\gt {{d}_{2}}\,\! }[/math]. then [math]\displaystyle{ {{d}_{lower}}={{d}_{2}}\,\! }[/math] and [math]\displaystyle{ {{d}_{upper}}={{d}_{1}}\,\! }[/math].
Cumulative Number of Failures
Fisher Matrix Bounds
The cumulative number of failures, [math]\displaystyle{ N(t)\,\! }[/math]. must be positive, thus [math]\displaystyle{ \ln \left( N(t) \right)\,\! }[/math] is approximately treated as being normally distributed.
- [math]\displaystyle{ \frac{\ln (\hat{N}(t))-\ln (N(t))}{\sqrt{Var\left[ \ln \hat{N}(t) \right]}}\sim N(0,1)\,\! }[/math]
- [math]\displaystyle{ N(t)=\hat{N}(t){{e}^{\pm {{z}_{\alpha }}\sqrt{Var(\hat{N}(t))}/\hat{N}(t)}}\,\! }[/math]
where:
- [math]\displaystyle{ \hat{N}(t)=\hat{\lambda }{{t}^{\hat{\beta }}}\,\! }[/math]
- [math]\displaystyle{ \begin{align} Var(\hat{N}(t))= & {{\left( \frac{\partial N(t)}{\partial \beta } \right)}^{2}}Var(\hat{\beta })+{{\left( \frac{\partial N(t)}{\partial \lambda } \right)}^{2}}Var(\hat{\lambda }) \\ & +2\left( \frac{\partial N(t)}{\partial \beta } \right)\left( \frac{\partial N(t)}{\partial \lambda } \right)cov(\hat{\beta },\hat{\lambda }) \end{align}\,\! }[/math]
The variance calculation is the same as the calculations in the confidence bounds on Beta.
- [math]\displaystyle{ \begin{align} \frac{\partial N(t)}{\partial \beta }= & \hat{\lambda }{{t}^{\hat{\beta }}}\ln (t) \\ \frac{\partial N(t)}{\partial \lambda }= & t\hat{\beta } \end{align}\,\! }[/math]
Crow Bounds
- [math]\displaystyle{ \begin{array}{*{35}{l}} {{N}_{L}}(T)=\tfrac{T}{\hat{\beta }}{{\lambda }_{i}}{{(T)}_{L}} \\ {{N}_{U}}(T)=\tfrac{T}{\hat{\beta }}{{\lambda }_{i}}{{(T)}_{U}} \\ \end{array}\,\! }[/math]
where [math]\displaystyle{ {{\lambda }_{i}}{{(T)}_{L}}\,\! }[/math] and [math]\displaystyle{ {{\lambda }_{i}}{{(T)}_{U}}\,\! }[/math] can be obtained using the equations given for the confidence bounds on Instantaneous Failure Intensity.