Loglogistic Distribution Example: Difference between revisions
Chris Kahn (talk | contribs) |
No edit summary |
||
Line 4: | Line 4: | ||
Determine the loglogistic parameter estimates for the data given in the following table. | Determine the loglogistic parameter estimates for the data given in the following table. | ||
<center><math>\overset{{}}{\mathop{\text{Test data}}}\,</math></center> | <center><math>\overset{{}}{\mathop{\text{Test data}}}\,\,\!</math></center> | ||
<center><math>\begin{matrix} | <center><math>\begin{matrix} | ||
Line 18: | Line 18: | ||
\text{9} & \text{675} & \text{680} \\ | \text{9} & \text{675} & \text{680} \\ | ||
\text{10} & \text{884} & \text{889} \\ | \text{10} & \text{884} & \text{889} \\ | ||
\end{matrix}</math></center> | \end{matrix}\,\!</math></center> | ||
Line 26: | Line 26: | ||
& {{{\hat{\mu }}}^{\prime }}= & 5.9772 \\ | & {{{\hat{\mu }}}^{\prime }}= & 5.9772 \\ | ||
& {{{\hat{\sigma }}}_{{{T}'}}}= & 0.3256 | & {{{\hat{\sigma }}}_{{{T}'}}}= & 0.3256 | ||
\end{align}</math> | \end{align}\,\!</math> | ||
For rank regression on | For rank regression on <math>X\,\!</math>: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
& \hat{\mu }= & 5.9281 \\ | & \hat{\mu }= & 5.9281 \\ | ||
& \hat{\sigma }= & 0.3821 | & \hat{\sigma }= & 0.3821 | ||
\end{align}</math> | \end{align}\,\!</math> | ||
For rank regression on | For rank regression on <math>Y\,\!</math>: | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
& \hat{\mu }= & 5.9772 \\ | & \hat{\mu }= & 5.9772 \\ | ||
& \hat{\sigma }= & 0.3256 | & \hat{\sigma }= & 0.3256 | ||
\end{align}</math> | \end{align}\,\!</math> |
Revision as of 17:51, 26 September 2012
New format available! This reference is now available in a new format that offers faster page load, improved display for calculations and images and more targeted search.
As of January 2024, this Reliawiki page will not continue to be updated. Please update all links and bookmarks to the latest references at Weibull examples and Weibull reference examples.
This example appears in the Life Data Analysis Reference book.
Determine the loglogistic parameter estimates for the data given in the following table.
Set up the folio for times-to-failure data that includes interval and left censored data, then enter the data. The computed parameters for maximum likelihood are calculated to be:
- [math]\displaystyle{ \begin{align} & {{{\hat{\mu }}}^{\prime }}= & 5.9772 \\ & {{{\hat{\sigma }}}_{{{T}'}}}= & 0.3256 \end{align}\,\! }[/math]
For rank regression on [math]\displaystyle{ X\,\! }[/math]:
- [math]\displaystyle{ \begin{align} & \hat{\mu }= & 5.9281 \\ & \hat{\sigma }= & 0.3821 \end{align}\,\! }[/math]
For rank regression on [math]\displaystyle{ Y\,\! }[/math]:
- [math]\displaystyle{ \begin{align} & \hat{\mu }= & 5.9772 \\ & \hat{\sigma }= & 0.3256 \end{align}\,\! }[/math]